Research identifies a way to block memories associated with PTSD or drug addiction

December 05, 2012

New research from Western University could lead to better treatments for Post-Traumatic Stress Disorder (PTSD) and drug addiction by effectively blocking memories. The research performed by Nicole Lauzon, a PhD candidate in the laboratory of Steven Laviolette at Western's Schulich School of Medicine & Dentistry has revealed a common mechanism in a region of the brain called the pre-limbic cortex, can control the recall of memories linked to both aversive, traumatic experiences associated with PTSD and rewarding memories linked to drug addiction. More importantly, the researchers have discovered a way to actively suppress the spontaneous recall of both types of memories, without permanently altering memories. The findings are published online in the journal Neuropharmacology.

"These findings are very important in disorders like PTSD or drug addiction. One of the common problems associated with these disorders is the obtrusive recall of memories that are associated with the fearful, emotional experiences in PTSD patients. And people suffering with addiction are often exposed to environmental cues that remind them of the rewarding effects of the drug. This can lead to drug relapse, one of the major problems with persistent addictions to drugs such as opiates," explains Laviolette, an associate professor in the Departments of Anatomy and Cell Biology, and Psychiatry. "So what we've found is a common mechanism in the brain that can control recall of both aversive memories and memories associated with rewarding experience in the case of drug addiction."

In their experiments using a rat model, the neuroscientists discovered that stimulating a sub-type of dopamine receptor called the "D1" receptor in a specific area of the brain, could completely prevent the recall of both aversive and reward-related memories. "The precise mechanisms in the brain that control how these memories are recalled are poorly understood, and there are presently no effective treatments for patients suffering from obtrusive memories associated with either PTSD or addiction," says Lauzon. "If we are able to block the recall of those memories, then potentially we have a target for drugs to treat these disorders."

"In the movie, 'Eternal Sunshine of a Spotless Mind,' they attempted to permanently erase memories associated with emotional experiences," adds Laviolette. "The interesting thing about our findings is that we were able to prevent the spontaneous recall of these memories, but the memories were still intact. We weren't inducing any form of brain damage or actually affecting the integrity of the original memories."
-end-
The research was funded by the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

University of Western Ontario

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.