UT study: 'Family' matters when predicting ecosystems' reaction to global change

December 05, 2014

Humans are rapidly changing the look and function of earth's ecosystems, from the increase of greenhouse gases to the unintentional and harmful spread of plants and animals to new environments. A major challenge for ecologists is to understand how and why communities respond to factors that underlie global change.

A University of Tennessee, Knoxville, study is finding some clues. It shows that just as our family histories dictate what we look like and how we act, plant evolutionary history shapes community responses to interacting agents of global change.

The research, published in the open-access journal PLOS ONE, may help predict what ecosystems will look like in the future and how they will work. To view the article, visit http://bit.ly/1AbFugC.

"The issues of global change have already begun to jeopardize the natural functioning of ecosystems and important services that we often take for granted like clean air, clean water, food and fiber production," said Rachel Wooliver, lead author and doctoral student in ecology and evolutionary biology. "Our study is the first to experimentally show that plant communities with different evolutionary backgrounds will respond differently to human-caused physical and biological changes."

In other words, regarding the future effects of global change on ecosystem services and processes humans rely upon, it's all in the family.

Wooliver and colleagues from UT, the University of Tasmania and Villanova University used eucalypt species native to Tasmania, Australia, to compare plant growth in cultures of all the same species to that of mixtures with native species with an introduced hardwood plantation species. They analyzed plant activity in an ambient environment versus one of increased levels of carbon dioxide and soil nitrogen.

"We found that only those communities composed of native species within one evolutionary lineage responded significantly to elevated carbon dioxide and nitrogen by taking carbon from the atmosphere and sequestering it into biomass," said co-author John Senior of the University of Tasmania. "Communities from another lineage, on the other hand, showed no response, which suggests that they will play a less crucial role in offsetting the rise of carbon dioxide and global warming."

This means that evolutionary history will shape which species will effectively sequester carbon and which won't.

Further, the presence of the nonnative species in these communities influenced productivity differently depending on the evolutionary background of the interacting native species. Thus, family trees can be used to predict how the spread of nonnative species by humans will shape the look and function of ecosystems as global change continues.

"Overall, this study provides new direction for global change scientists by highlighting that evolutionary history is key to understanding outcomes of plant function and diversity with rapid ecological change," said Wooliver.

The work is promising to researchers that are trying to figure out if species interactions change how ecosystems are responding to global change, as well as conservation biologists who aim to determine which species might be at higher risk for extinction in the future.

University of Tennessee at Knoxville

Related Ecosystems Articles from Brightsurf:

Radical changes in ecosystems
Earth and all the living organisms on it are constantly changing.

Global warming will cause ecosystems to produce more methane than first predicted
New research suggests that as the Earth warms natural ecosystems such as freshwaters will release more methane than expected from predictions based on temperature increases alone.

Fresh groundwater flow important for coastal ecosystems
Groundwater is the largest source of freshwater, one of the world's most precious natural resources and vital for crops and drinking water.

Re-thinking 'tipping points' in ecosystems and beyond
Abrupt environmental changes, known as regime shifts, are the subject of new research in which shows how small environmental changes trigger slow evolutionary processes that eventually precipitate collapse.

Even after death, animals are important in ecosystems
Animal carcasses play an important role in biodiversity and ecosystem functioning.

Natural ecosystems protect against climate change
The identification of natural carbon sinks and understanding how they work is critical if humans are to mitigate global climate change.

Viruses as modulators of interactions in marine ecosystems
Viruses are mainly known as pathogens - often causing death.

How to prevent mosquitofish from spreading in water ecosystems
Preventing the introduction of the mosquitofish and removing its population are the most effective actions to control the dispersal of this exotic fish in ponds and lakes, according to a study published in the journal Science of the Total Environment.

Mount Kilimanjaro: Ecosystems in global change
Land use in tropical mountain regions leads to considerable changes of biodiversity and ecological functions.

The fiddlers influencing mangrove ecosystems
The types of bacteria living in and around fiddler crab burrows vary widely between mangroves, but their functional activities are remarkably similar.

Read More: Ecosystems News and Ecosystems Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.