Maximum observed earthquake magnitudes along continental transform faults

December 05, 2015

04.12.2015: Continental transform faults evolve when two plates slide along each other. The most prominent examples are the San Andreas Fault in California and the North Anatolian Fault in Turkey. Earthquakes along those faults typically do not exceed earthquake magnitudes around M8 but occur at shallow depth thus posing a major threat to nearby metropolitan regions such as San Francisco or Istanbul.

To estimate the seismic hazard and resulting risk it is essential to know the maximum earthquake magnitude to be expected along particular faults. This, however, is not trivial since instrumental recordings date back only 150 years while the recurrence period for the largest earthquakes can be much longer.

A team of scientists from the GFZ German Centre for Geosciences in collaboration with the University of Southern California has now presented a global evaluation of observed maximum earthquakes along all major transform faults allowing to better estimate the maximum earthquake strengths.

The major findings of the study are that for 75% of the data the observed maximum magnitude generally scales with the offset across the faults if exceeding 10 km. The offset across a fault results from the continuous slip of several mm to a few cm per year leading to offsets of kilometers after millions of years. Furthermore, it was found that the length of the rupture of individual earthquakes scales with mapped fault length.

For the remaining 25% of the earthquakes a larger coseismic stress drop was found to occur. 'This means that those earthquakes release more seismic energy during the rupture process and they all occur along faults with low slip rates allowing to distinguish them from the majority of events that show a direct relation to cumulative offset' says GFZ-scientist Patricia Martínez-Garzón, lead author of the study.

The results contribute towards developing refined building codes, risk mitigation concepts and early-warning systems and are, thus, of great relevance for millions of people living in population centers near transform faults.
-end-
Patricia Martínez-Garzón, Marco Bohnhoff, Yehuda Ben-Zion, Georg Dresen: 'Scaling of maximum observed magnitudes with geometrical and stress properties of strike-slip faults', Geophysical Research Letters, DOI: 10.1002/2015GL066478

Photo in a printable resolution may be found here:https://media.gfz-potsdam.de/gfz/wv/05_Medien_Kommunikation/Bildarchiv/_Einzelbilder_PM/10230_San-Andreas_Martinez-Garzon-GFZ.jpg

Caption: One of the world's most famous faults: the Californian Andreas Fault, seen here in the Bay area of San Francisco (photo: P. Martínez-Garzón, GFZ)

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.