Nav: Home

Gene editing yields tomatoes that flower and ripen weeks earlier

December 05, 2016

Cold Spring Harbor, NY - Using a simple and powerful genetic method to tweak genes native to two popular varieties of tomato plants, a team at Cold Spring Harbor Laboratory (CSHL) has devised a rapid method to make them flower and produce ripe fruit more than 2 weeks faster than commercial breeders are currently able to do.

This means more plantings per growing season and thus higher yield. In this case, it also means that the plant can be grown in latitudes more northerly than currently possible - an important attribute as the earth's climate warms.

"Our work is a compelling demonstration of the power of gene editing - CRISPR technology - to rapidly improve yield traits in crop breeding," says CSHL Associate Professor Zachary Lippman, who led the research. Applications can go far beyond the tomato family, he says, to include many major food crops like maize, soybean, and wheat that so much of the world depends upon.

Lippman clarifies that the technique his team publishes today in Nature Genetics is about more than simply increasing yield. "It's really about creating a genetic toolkit that enables growers and breeders in a single generation to tweak the timing of flower production and thus yield, to help adapt our best varieties to grow in parts of the world where they don't currently thrive."

At the heart of the method are insights obtained by Lippman and colleagues, including plant scientists at the Boyce Thompson Institute in Ithaca, NY and in France led by Dr. José Jiménez-Gómez, about the evolution of the flowering process in many crops and their wild relatives as it relates to the length of the light period in a day. Genetic research revealed why today's cultivated tomato plant is not very sensitive to this variable compared to wild relatives from South America. Somehow, it does not much matter to domesticated plants whether they have 12 hours of daylight or 16 hours; they flower at virtually the same point after planting.

A well-known hormonal system regulates flowering time - and hence the time when the plant will generate its first ripe fruit. The hormone florigen and a counteracting "anti-florigen" hormone called SP (for SELF PRUNING) act together, in yin-yang fashion, to, respectively, promote or delay flowering. In one phase of the newly reported research, the investigators studied a wild tomato species native to the Galapagos Islands - near the equator, with days and nights close to 12 hours year-round. They wanted to learn why, when grown in northern latitudes with very long summer days, this plant flowered very late in the season and produced few fruits.

The wild equatorial tomato, they learned, was extremely sensitive to daylight length. The longer the day, the longer the time to flowering, whereas "when you have a shorter light period, as in the plant's native habitat, they flower faster," Lippman says. This suggested there was a genetic change in tomato plants that occurred at some point before or during the domestication of wild tomato plants. Lippman suspects these changes likely had already occurred when the Spanish conquistador Cortez brought tomatoes to Europe from Mexico in the early 16th century, beginning the era of the plant's widespread adoption in mid-northern latitudes.

Lippman and colleagues traced the loss of day-length sensitivity in domesticated tomatoes to mutations in a gene called SP5G (SELF PRUNING 5G). It's a member of the same family of florigen and anti-florigen genes that were already known to regulate flowering time in tomato.

Growing the wild tomato plant from the Galapagos in greenhouses and fields in New York, Lippman and colleagues observed a sharp spike in the expression and activity of the anti-florigen hormone encoded by the SP5G gene, causing flowering to occur much later. In domesticated tomato plants, in contrast, that surge of anti-florigen is much weaker.

The team's principal innovation - generating varieties of cherry and roma tomatoes that flower much earlier than the domesticated varieties on which they are based - arises from the observation that while domesticated plants are notably insensitive to day length, "there was some residual expression of the anti-florigen SP5G gene," Lippman says.

This led the team to employ the gene-editing tool CRISPR to induce tiny mutations in the SP5G gene. The aim was to inactivate the gene entirely such that it did not generate any anti-florigen protein at all.

When this tweaked version of SP5G was introduced to popular roma and cherry tomato varieties, the plants flowered earlier, and thus made fruits that ripened earlier. Tweaking another anti-florigen gene that makes tomato plants grow in a dense, compact, shrub-like manner made the early-flowering varieties even more compact and early-yielding - a trait the team calls "double-determinate."

"What we've demonstrated here is fast-forward breeding," Lippman says. "Now we have a simple strategy to completely eliminate daylight sensitivity in elite inbred and hybrid plants that are already being cultivated. This could enable growers to expand their geographical range of cultivation, simply by using CRISPR to rapidly 'adapt' tomato and other crops to more northern latitudes, where summers have very long days and very short growing seasons."
-end-
This research was supported by EMBO, the Next-Generation BioGreen 21 Program, the German Research Foundation, the Max Planck Society, the German Research Foundation under the German-Israeli Project Cooperation program, BARD, the US-Israel Binational Agricultural Research & Development fund, Agriculture and Food Research Initiative competitive grant from the USDA, and the National Science Foundation Plant Genome Research Program.

"Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato" appears online December 5, 2016 in Nature Genetics. The authors are: Sebastian Soyk, Niels A. Müller, Soon Ju Park, Inga Schmalenbach, Ke Jiang, Ryosuke Hayama, Lei Zhang, Joyce Van Eck, José M. Jiménez-Gómez and Zachary B. Lippman. The apper can be accessed at: http://www.nature.com/ng/journal/vaop/ncurrent/index.html

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL has been a National Cancer Institute designated cancer center since 1987. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program hosts more than 12,000 scientists from around the world each year on its campuses in Long Island and in Suzhou, China. The Laboratory's education arm also includes an academic publishing house, a graduate school and programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Cold Spring Harbor Laboratory

Related Tomato Articles:

Meatballs might wreck the anti-cancer perks of tomato sauce
Some of the anti-cancer benefits of tomatoes, specifically those from a compound called lycopene, could disappear when they're eaten with iron-rich foods, according to a new study from The Ohio State University.
Harnessing tomato jumping genes could help speed-breed drought-resistant crops
Once dismissed as 'junk DNA' that served no purpose, a family of 'jumping genes' found in tomatoes has the potential to accelerate crop breeding for traits such as improved drought resistance.
Scientists propose environmentally friendly control practices for harmful tomato disease
Tomato yellow leaf curl disease (TYLCD) is the most destructive disease of tomato, causing severe damage to crops worldwide and resulting in high economic losses.
Unsalted tomato juice may help lower heart disease risk
In a study published in Food Science & Nutrition, drinking unsalted tomato juice lowered blood pressure and LDL cholesterol in Japanese adults at risk of cardiovascular disease.
Tomato pan-genome makes bringing flavor back easier
Store-bought tomatoes don't have much flavor. Now, scientists from the Agricultural Research Service (ARS) and the Boyce Thompson Institute (BTI) may have spotlighted the solution by developing the tomato pan-genome, mapping almost 5,000 previously undocumented genes, including genes for flavor.
More Tomato News and Tomato Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...