Nav: Home

Confirmation of Wendelstein 7-X magnetic field

December 05, 2016

Physicist Sam Lazerson of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

The findings, published in the November 30 issue of Nature Communications, revealed an error field -- or deviation from the designed configuration -- of less than one part in 100,000. Such results could become a key step toward verifying the feasibility of stellarators as models for future fusion reactors.

W7-X, for which PPPL is the leading U.S. collaborator, is the largest and most sophisticated stellarator in the world. Built by the Max Planck Institute for Plasma Physics in Greifswald, it was completed in 2015 as the vanguard of the stellarator design. Other collaborators on the U.S. team include DOE's Oak Ridge and Los Alamos National Laboratories, along with Auburn University, the Massachusetts Institute of Technology, the University of Wisconsin-Madison and Xanthos Technologies.

Twisty magnetic fields

Stellarators confine the hot, charged gas, otherwise known as plasma, that fuels fusion reactions in twisty -- or 3D -- magnetic fields, compared with the symmetrical -- or 2D --fields that the more widely used tokamaks create. The twisty configuration enables stellarators to control the plasma with no need for the current that tokamaks must induce in the gas to complete the magnetic field. Stellarator plasmas thus run little risk of disrupting, as can happen in tokamaks, causing the internal current to abruptly halt and fusion reactions to shut down.

PPPL has played key roles in the W7-X project. The Laboratory designed and delivered five barn door-sized trim coils that fine-tune the stellarator's magnetic fields and made their measurement possible. "We've confirmed that the magnetic cage that we've built works as designed," said Lazerson, who led roughly half the experiments that validated the configuration of the field. "This reflects U.S. contributions to W7-X," he added, "and highlights PPPL's ability to conduct international collaborations." Support for this work comes from Euratom and the DOE Office of Science.

To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface.

Remarkable fidelity

Results showed a remarkable fidelity to the design of the highly complex magnetic field. "To our knowledge," the authors write of the discrepancy of less than one part in 100,000, "this is an unprecedented accuracy, both in terms of the as-built engineering of a fusion device, as well as in the measurement of magnetic topology."

The W7-X is the most recent version of the stellarator concept, which Lyman Spitzer, a Princeton University astrophysicist and founder of PPPL, originated during the 1950s. Stellarators mostly gave way to tokamaks a decade later, since the doughnut-shaped facilities are simpler to design and build and generally confine plasma better. But recent advances in plasma theory and computational power have led to renewed interest in stellarators.

Such advances caused the authors to wonder if devices like the W7-X can provide an answer to the question of whether stellarators are the right concept for fusion energy. Years of plasma physics research will be needed to find out, they conclude, and "that task has just started."
-end-
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Princeton Plasma Physics Laboratory

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.