Nav: Home

Confirmation of Wendelstein 7-X magnetic field

December 05, 2016

Physicist Sam Lazerson of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

The findings, published in the November 30 issue of Nature Communications, revealed an error field -- or deviation from the designed configuration -- of less than one part in 100,000. Such results could become a key step toward verifying the feasibility of stellarators as models for future fusion reactors.

W7-X, for which PPPL is the leading U.S. collaborator, is the largest and most sophisticated stellarator in the world. Built by the Max Planck Institute for Plasma Physics in Greifswald, it was completed in 2015 as the vanguard of the stellarator design. Other collaborators on the U.S. team include DOE's Oak Ridge and Los Alamos National Laboratories, along with Auburn University, the Massachusetts Institute of Technology, the University of Wisconsin-Madison and Xanthos Technologies.

Twisty magnetic fields

Stellarators confine the hot, charged gas, otherwise known as plasma, that fuels fusion reactions in twisty -- or 3D -- magnetic fields, compared with the symmetrical -- or 2D --fields that the more widely used tokamaks create. The twisty configuration enables stellarators to control the plasma with no need for the current that tokamaks must induce in the gas to complete the magnetic field. Stellarator plasmas thus run little risk of disrupting, as can happen in tokamaks, causing the internal current to abruptly halt and fusion reactions to shut down.

PPPL has played key roles in the W7-X project. The Laboratory designed and delivered five barn door-sized trim coils that fine-tune the stellarator's magnetic fields and made their measurement possible. "We've confirmed that the magnetic cage that we've built works as designed," said Lazerson, who led roughly half the experiments that validated the configuration of the field. "This reflects U.S. contributions to W7-X," he added, "and highlights PPPL's ability to conduct international collaborations." Support for this work comes from Euratom and the DOE Office of Science.

To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface.

Remarkable fidelity

Results showed a remarkable fidelity to the design of the highly complex magnetic field. "To our knowledge," the authors write of the discrepancy of less than one part in 100,000, "this is an unprecedented accuracy, both in terms of the as-built engineering of a fusion device, as well as in the measurement of magnetic topology."

The W7-X is the most recent version of the stellarator concept, which Lyman Spitzer, a Princeton University astrophysicist and founder of PPPL, originated during the 1950s. Stellarators mostly gave way to tokamaks a decade later, since the doughnut-shaped facilities are simpler to design and build and generally confine plasma better. But recent advances in plasma theory and computational power have led to renewed interest in stellarators.

Such advances caused the authors to wonder if devices like the W7-X can provide an answer to the question of whether stellarators are the right concept for fusion energy. Years of plasma physics research will be needed to find out, they conclude, and "that task has just started."
-end-
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Princeton Plasma Physics Laboratory

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Earth's Magnetic Field Secrets: An Illusion Mixed With Reality
by Dennis Brooks (Author)

Power Tools for Health: How Pulsed Magnetic Fields (Pemfs) Help You
by Msc William Pawluk MD (Author), Caitlin Layne (Author)

Know Your Magnetic Field: Change Your Thinking, Change Your Life.
by William E. Gray (Author)

Magnetic Fields' 69 Love Songs: A Field Guide (33 1/3)
by LD Beghtol (Author), Ken Emerson (Introduction)

NOW 2 kNOW Electro-Magnetic Fields
by Dr. T G D'Alberto (Author)

The Electromagnetic Field (Dover Books on Physics)
by Dover Publications

Cosmic Magnetic Fields (Cambridge Astrophysics)
by Philipp P. Kronberg (Author)

Magnetic Fields: Expanding American Abstraction, 1960s to Today
by Valerie Cassel Oliver (Author), Lowery Stokes Sims (Author), Erin Dziedzic (Editor), Melissa Messina (Editor)

Solar Magnetic Fields: From Measurements Towards Understanding (Space Sciences Series of ISSI)
by André Balogh (Editor), Edward Cliver (Editor), Gordon Petrie (Editor), Sami Solanki (Editor), Michael Thompson (Editor), Rudolf von Steiger (Editor)

Electricity and Magnetism: An Introduction to the Theory of Electric and Magnetic Fields, 2nd edition
by Oleg D. Jefimenko (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.