Nav: Home

New study of water-saving plants advances efforts to develop drought-resistant crops

December 05, 2016

OAK RIDGE, Tenn., Dec. 5, 2016 - As part of an effort to develop drought-resistant food and bioenergy crops, scientists at the Department of Energy's Oak Ridge National Laboratory have uncovered the genetic and metabolic mechanisms that allow certain plants to conserve water and thrive in semi-arid climates.

Semi-arid plants such as agave have adapted to survive in areas with little rainfall by developing a specialized mode of photosynthesis called crassulacean acid metabolism, or CAM. Unlike plants in wetter environments, CAM plants absorb and store carbon dioxide through open pores in their leaves at night, when water is less likely to evaporate. During the day, the pores, also called stomata, stay closed while the plant uses sunlight to convert carbon dioxide into energy, minimizing water loss.

ORNL scientists are studying the unique metabolic mechanisms that allow CAM plants to conserve water, with the goal of introducing water-saving traits into bioenergy and food crops. The results of the team's latest study, which focuses on agave, are published in Nature Plants as the journal's cover story.

The CAM photosynthetic process, discovered in the 1950s, has largely remained a scientific curiosity, but researchers are now examining it as a potential solution to maintaining food and bioenergy crop yields during water shortages and drought.

"Today's demand on agricultural systems to provide food, feed, forage, fiber and fuel call for more comprehensive research into understanding the complexities of CAM plants," said ORNL coauthor Xiaohan Yang. "As we uncover each layer of the CAM process, our studies aim to speed up the evolution of crops to give them the ability to thrive in more arid environments as the availability of freshwater becomes limited."

To gain a comprehensive view of the complex CAM system, the team used ORNL's mass spectrometry to compare the molecular traits of agave with a control plant, Arabidopsis, which uses a more common photosynthetic process.

The team evaluated genetic behavior that signals stomatal movement in each plant over the same 24-hour period. Their study revealed that the timing of daytime versus nighttime stomatal activity varied significantly between agave and Arabidopsis. The research also pinpointed which genetic and metabolic mechanisms signal CAM plants to open and close their stomata. Understanding the timing of these signals will be key to transferring CAM processes into crops such as rice, corn, poplar and switchgrass.

"Further research is required to understand how this molecular timekeeping regulates CAM, but the results of this study provide new insights into the complexity of CAM biodesign, featuring an integrative understanding of CAM at the molecular level," Gerald Tuskan, ORNL Corporate Fellow and coauthor, said. "The transfer of CAM molecular machinery into energy crops would facilitate their deployment onto marginal lands and would simultaneously reduce competition with food crops."
-end-
The study titled, "Transcript, protein and metabolite temporal dynamics in the CAM plant Agave," included coauthors Paul Abraham, Hengfu Yin, Henrique Cestari De Paoli, Nancy Engle, Ryan Agh, David Weston, Stan Wullschleger, Timothy Tschaplinski, Daniel Jacobson, Robert Hettich, Gerald Tuskan and Xiaohan Yang of ORNL; Anne Borland of the University of Newcastle and ORNL; Deborah Weighill and Piet Jones of the University of Tennessee and ORNL; and John Cushman and Sung Don Lim of the University of Nevada.

The research was funded by DOE's Office of Science and used resources of the Compute and Data Environment for Science (CADES) at ORNL, a fully integrated infrastructure offering scalable computing, software support and high-performance cloud storage services for researchers labwide.

UT-Battelle manages ORNL for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

DOE/Oak Ridge National Laboratory

Related Bioenergy Articles:

Size matters for bioenergy with carbon capture and storage
New research has shown that Drax power station in North Yorkshire is the optimal site for the carbon capture and storage facilities that will be needed reduce carbon emissions and achieve the targets of 2016 Paris Climate Agreement.
Researchers: Put a brake on bioenergy by 2050 to avoid negative climate impacts
A peer-reviewed assessment cautions that ramping up bioenergy projects requiring large stretches of land could send renewable energy sector down an unsustainable path.
The use of sugarcane straw for bioenergy is an opportunity, but there are pros and cons
Brazilian researchers calculated the amount of nutrients in sugarcane leaves, which are normally left on the ground after harvest, and the equivalent in fertilizer required to maintain crop yield if the straw is removed.
Finding (microbial) pillars of the bioenergy community
In a new study in Nature Communications, Great Lakes Bioenergy Research Center scientists at Michigan State University have focused on understanding more about the plant regions above the soil where these microbes can live, called the 'phyllosphere.' Ashley Shade, MSU assistant professor of microbiology and molecular genetics, and her lab classified core members of this community in switchgrass and miscanthus.
Fewer cows, more trees and bioenergy
Combatting global warming will require major changes in land use, a new climate change report says.
When temperatures drop, Siberian Miscanthus plants surpass main bioenergy variety
Miscanthus is a popular, sustainable, perennial feedstock for bioenergy production that thrives on marginal land in temperate regions.
Bioenergy crops could be as bad for biodiversity as climate change
A large scale expansion in bioenergy crop production could be just as detrimental to biodiversity as climate change itself, according to new research.
Algae-forestry, bioenergy mix could help make CO2 vanish from thin air
An unconventional mélange of algae, eucalyptus and bioenergy with carbon capture and storage appears to be a quirky ecological recipe.
The new bioenergy research center: building on ten years of success
The Great Lakes Bioenergy Research Center (GLBRC), led by the University of Wisconsin-Madison, recently embarked on a new mission: to develop sustainable alternatives to transportation fuels and products currently derived from petroleum.
Study identifies additional hurdle to widespread planting of bioenergy crops
A study examining how certain decisions impact what farmers plant and harvest identified one crucial factor that researchers believe needs to be added to the list of decision variables when considering bioenergy crops: the option value.
More Bioenergy News and Bioenergy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.