Nav: Home

Immunotherapy shows promise in preventing leukemia relapse

December 05, 2016

SEATTLE - Dec. 5, 2016 - Fred Hutchinson Cancer Research Center announced promising results from an early trial in which patients with high-risk acute myeloid leukemia received genetically engineered immune cells. Of the 12 AML patients who received this experimental T-cell therapy after a transplant put their disease in remission, all are still in remission after a median follow-up of more than two years.

Giving these cells when disease is in remission after transplant "might actually be helping patients who have a high risk of relapsing to not relapse down the line," said Dr. Aude Chapuis, cancer physician and immunotherapy researcher at Fred Hutch, one of the study's leaders. Chapuis presented these results at the 2016 annual meeting of the American Society of Hematology in San Diego, California.

The findings in this group of trial participants contrast with the outcomes the researchers observed in a cohort of similar patients who received transplants around the same time but did not receive engineered T cells. In all of these transplant-only patients, the transplants produced remissions, but more than a quarter of them relapsed within just 10 months.

In the experimental T-cell therapy tested in this trial, certain T cells from each patient's transplant donor were genetically engineered to produce receptors that allowed the T cells to recognize, very specifically, a target molecule called WT1. WT1 is 10 to 1,000 times more common in leukemia cells than their noncancerous cousins, making it a natural target for therapies designed to destroy cancer cells while leaving most healthy cells alone.

This is the team's first trial of this strategy, which was initially developed in the lab of Dr. Phil Greenberg, one of the study's leaders and the head of Fred Hutch's Program in Immunology. Because it was the first study of this particular approach, the researchers focused on a high-risk group -- AML patients undergoing bone marrow transplant who had certain genetic or disease characteristics that decrease the chance of long-term transplant success -- "a hard population of patients," Chapuis said, many of whom "were horribly sick."

Each patient's therapy was created just for them in a specialized Fred Hutch facility. Certain T cells from each patient's matched donor were given the genetic instructions to make a receptor that specifically reacts to WT1. Then came a blood stem cell transplant: Patients' leukemic bone marrow and blood cells were destroyed and replaced with healthy cells from their donors. A month later, when the team examined these 12 patients' marrow, they found no trace of the cancers. Rapidly thereafter, once the transplanted cells fully engrafted, each patient then received up to 10 billion of the genetically engineered donor cells, infused into their arm through an IV.

Chapuis's role in this trial is on the laboratory side of the research, ensuring the quality of the genetically engineered cell products and monitoring the activity of the cells after infusion. She co-leads this research with Greenberg and Dr. Dan Egan of Fred Hutch, the trial's principal investigator and the care provider for trial participants. The study was supported by funding from the National Institutes of Health and spinoff Juno Therapeutics, of which Greenberg is a scientific co-founder.

Outside of this trial, Chapuis treats cancer patients at Fred Hutch's clinical care partner, Seattle Cancer Care Alliance. Watching her patients undergo bone marrow transplant ? itself the first clear and reproducible example of cancer immunotherapy, developed at Fred Hutch ? has made her want to work toward something better.

"That's my source of inspiration. I'm always horrified by the intense treatment that we inflict on bone marrow transplant patients and the hardship that we make them go through. And I really think we can do better," Chapuis said. "That's why I'm doing this."
-end-
At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer with minimal side effects. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first and largest cancer prevention research program, as well as the clinical coordinating center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network. Private contributions are essential for enabling Fred Hutch scientists to explore novel research opportunities that lead to important medical breakthroughs. For more information, visit fredhutch.org or follow Fred Hutch on Facebook, Twitter or YouTube.

Fred Hutchinson Cancer Research Center

Related Disease Articles:

Viewpoint: Could disease pathogens be the dark matter behind Alzheimer's disease?
In a lively discussion appearing in the Viewpoint section of the journal Nature Reviews Neurology, Ben Readhead, a researcher in the ASU-Banner Neurodegenerative Disease Research Center at the Biodesign Institute joins several distinguished colleagues to discuss the idea that bacteria, viruses or other infectious pathogens may play a role in Alzheimer's disease.
Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.
Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.
Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).
30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.
Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.
Inflammatory bowel disease appears to impact risk of Parkinson's disease
Amsterdam, NL, November 14, 2019 - Relatively new research findings indicating that the earliest stages of Parkinson's disease (PD) may occur in the gut have been gaining traction in recent years.
Contact sports associated with Lewy body disease, Parkinson's disease symptoms, dementia
There is mounting evidence that repetitive head impacts from contact sports and other exposures are associated with the neurodegenerative disease chronic traumatic encephalopathy (CTE) and dementia.
In kidney disease patients, illicit drug use linked with disease progression and death
Among individuals with chronic kidney disease, hard illicit drug use was associated with higher risks of kidney disease progression and early death.
Despite reductions in infectious disease mortality in US, diarrheal disease deaths on the rise
Deaths from infectious diseases have declined overall in the United States over the past three decades.
More Disease News and Disease Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.