Nav: Home

Why friction depends on the number of layers

December 05, 2016

Based on simulations, friction properties of the two-dimensional carbon graphene were studied by scientists of Karlsruhe Institute of Technology (KIT) in cooperation with researchers of the Fraunhofer Institute for Mechanics of Materials IWM and scientists in China and the USA. In contact with monolayer graphene, friction is higher than in case of multi-layered graphene or graphite. Moreover, friction force increases for continued sliding. The scientists attribute this to the real contact area and the evolving quality of frictional contact. They report their results in the journal Nature. (DOI: 10.1038/nature20135)

When interfaces of solids are in contact and move in opposite directions, friction occurs. Energy is converted into heat that is lost unused. In addition, friction causes erosion and wear. To reduce friction for metallic sliding elements and high contact pressures, e.g. in automobiles or industrial machines, substances of lamellar structure are frequently used as dry lubricants, as their particles easily slide on each other.

One of the most widely applied dry lubricants is graphite, a natural form of carbon with a three-dimensional, layered structure. Graphite theoretically consists of several layers of graphene that are stacked on top of each other with a slight offset. Graphene is a modification of carbon with a two-dimensional structure: It consists of only one layer of carbon atoms that are arranged in hexagons similar to honeycombs. In nature, graphene does not exist as an isolated monolayer material, but it can be produced by several methods.

Experiments have shown that monolayer graphene exhibits higher friction than multilayer graphene or graphite and that friction increases with continued sliding. So far, the reasons have not yet been understood. Scientists of the Institute for Applied Materials (IAM) and the Institute of Nanotechnology (INT) of KIT, together with researchers of the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Xi'an Jiaotong University/China, Tsinghua University in Beijing/China, Massachusetts Institute of Technology/USA, and the University of Pennsylvania/USA, reproduced the experiments by atomistic simulations and obtained new findings with respect to layer-dependent friction and the increase in friction force for graphene. Their results are presented in the journal Nature.

In the simulations, the scientists made a silicon tip slide over graphene applied onto an amorphous, i.e. non-crystalline, silicon substrate. Previously, it had been assumed that friction between interfaces depends on the true contact area - the number of atoms within the range of interatomic forces - and increased friction of monolayer graphene had been attributed to the larger true contact area. The scientists of KIT and their colleagues now found that apart from the true contact area, also the evolving contact quality is important.

Due to its increased flexibility, the thinner and less constrained monolayer graphene tends to readjust its configuration. Carbon atoms more strongly adhere to the atoms of the silicon tip and exhibit an increased synchronicity in their stick-slip behavior. Contacts on the atomic scale increase quantitatively in terms of the contact area and qualitatively in terms of friction force. "Our concept of evolving contact quality can be used to explain why friction of interfaces of a less constrained structure changes with time," Dr. Suzhi Li of IAM - Computational Materials Science of KIT, explains.
-end-
Suzhi Li, Qunyang Li, Robert W. Carpick, Peter Gumbsch, Xin Z. Liu, Xiangdong Ding, Jun Sun & Ju Li: The evolving quality of frictional contact with graphene. Nature, 2016. DOI: 10.1038/nature20135

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT - The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

This press release is available on the internet at http://www.kit.edu.

Karlsruher Institut für Technologie (KIT)

Related Graphene Articles:

Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
More Graphene News and Graphene Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...