Nav: Home

Cell Atlas launched at ASCB 2016 Meeting

December 05, 2016

San Francisco, Dec. 4, 2016: After the completion of the human genome in 2001, another major milestone was reached with the launch of the Cell Atlas at the 2016 American Society of Cell Biology Meeting in San Francisco. An open-access interactive database with unparalleled high-resolution images, the Cell Atlas visualizes for the first time the location of more than 12,000 proteins in cells -- opening the way for "spatial proteomics", an exciting new discipline which is expected to lead to a fundamental expansion in our understanding of human health and disease.

KTH Royal Institute of Technology Professor Mathias Uhlen, who is Director of the Human Protein Atlas, explains: "After the genome project, which has characterized the number of human protein-coding genes, the next step is to elucidate the function of these proteins. Being able to show the location of human proteins in time and space with subcellular resolution is an essential first step towards gaining new insights into protein function."

The Cell Atlas, part of the Sweden-based Human Protein Atlas initiative, displays high resolution, multicolour images of immunofluorescent stained cells. With more than 12,000 human proteins mapped to 30 different cellular structures, the Cell Atlas provides spatial information on protein expression patterns at a fine subcellular level. The analysis reveals a surprisingly complex cellular architecture with more than half of all proteins localized to multiple compartments. Furthermore, a significant portion was found to exhibit variation in expression at a single cell level.

In a novel twist, the project also enlisted the help of online gamers. CCP Games, Massively Multiplayer Online Science (MMOS), Reykjavik University, and the Cell Atlas team jointly developed a mini-game, "Project Discovery", for EVE Online gamers. KTH Associate Professor Emma Lundberg, Director of the Cell Atlas, says: "At any time and place in EVE Online, players are able to play the mini-game, Project Discovery, and categorize the protein expression patterns from Cell Atlas images into different organelle categories. This was a help for us in classifying organelle substructures and refining the details in the Cell Atlas.

"In particular, we expect the Cell Atlas to play a key role in the exciting new area of spatial proteomics. In order to expand our understanding of the workings of human cells from a holistic point of view, in particular in the context of health and disease, detailed knowledge about the underlying molecular system is needed," Lundberg says.
-end-


KTH, Royal Institute of Technology

Related Proteins Articles:

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.