Nav: Home

Protein synthesis: Ribosome recycling as a drug target

December 05, 2016

Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have elucidated a mechanism that recycles bacterial ribosomes stalled on messenger RNAs that lack termination codons. The protein involved provides a potential target for future antibiotics.

So-called multidrug-resistant bacteria - strains that have become resistant to conventional antibiotics - pose an increasingly serious medical problem, which underlines the urgent need to develop new antibiotics that attack novel targets. "Many of the most effective antibiotics act by inhibiting various steps in protein synthesis on bacterial ribosomes," as LMU biochemist Daniel Wilson points out. The search is now on for agents that interfere with aspects of the process that have so far been overlooked in this context. One of these processes is the recycling of stalled ribosomes. Wilson and his research group have just completed a comprehensive structural study of ribosome recycling. The results of the study, which appears in the leading journal Nature, may identify promising points of attack for future antibiotics.

Ribosomes are the organelles that translate the nucleotide sequences encoded in messenger RNA molecules (mRNAs) into the amino-acid sequences of the corresponding proteins. The ribosome "reads" the nucleotide sequence in a fixed direction and is released from the mRNA only when it reaches a defined termination signal. Errors in synthesis or processing may, however, lead to the production of mRNAs that lack termination signals, causing the ribosome to stall while still attached to the mRNA and the growing protein. Cells have evolved several ways of detaching stalled ribosomes from the truncated mRNAs and recycling them for re-use. Wilson's team has now employed cryo-electron microscopy to determine the structure of the bacterial recycling factor ArfA. Their analysis reveals how ArfA recognizes the stalled ribosome on a defective mRNA and recruits a so-called release factor, which detaches the incomplete protein. This then enables the stalled ribosome to be released from the mRNA in the normal manner by dissociation into its two component subunits. The subunits are then free to interact with another mRNA, thus allowing protein synthesis to proceed.

"Our results could facilitate the development of new antibiotics that act by inhibiting ArfA-mediated ribosome recycling," says Wilson. Since recycling of human ribosomes is dependent on factors that are unrelated to ArfA, such inhibitors should act specifically on the bacterial ribosome, and kill the bacterial cell by gradually cutting off the supply of free ribosomes.
-end-


Ludwig-Maximilians-Universität München

Related Antibiotics Articles:

Resistance can spread even without the use of antibiotics
Antibiotic resistance does not spread only where and when antibiotics are used in large quantities, ETH researchers conclude from laboratory experiments.
Selective antibiotics following nature's example
Chemists from Konstanz develop selective agents to combat infectious diseases -- based on the structures of natural products
Antibiotics can inhibit skin lymphoma
New research from the LEO Foundation Skin Immunology Research Center at the University of Copenhagen shows, surprisingly, that antibiotics inhibit cancer in the skin in patients with rare type of lymphoma.
Antibiotics may treat endometriosis
Researchers at Washington University School of Medicine in St. Louis have found that treating mice with an antibiotic reduces the size of lesions caused by endometriosis.
How antibiotics help spread resistance
Bacteria can become insensitive to antibiotics by picking up resistance genes from the environment.
More Antibiotics News and Antibiotics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...