Nav: Home

RNA interference is activated in human response to influenza, other important viruses

December 05, 2016

Researchers from Massachusetts General Hospital (MGH) and the University of California, Riverside, have shown for the first time that RNA interference (RNAi) - an antiviral mechanism known to be used by plants and lower organisms - is active in the response of human cells to some important viruses. In their report receiving advance online publication in Nature Microbiology, the investigators document both the production of RNAi molecules in human cells infected with the influenza A virus and the suppression of RNAi defense by a viral protein known to block the process in a common animal model.

"Viruses are the most abundant infectious agents and are a constant threat to human health," says Kate Jeffrey, PhD, of the Gastrointestinal Unit in the MGH Department of Medicine, co-corresponding author of the paper. "Vaccines are somewhat effective but can have limited use when viruses like influenza rapidly mutate from year to year. Identifying therapeutic targets within patients that could help them fight off an infection is a critical strategy for combating the spread of common, often-dangerous viruses."

First described in the 1990s - a discovery that led to the 2006 Nobel Prize - RNAi is a process by which organisms suppress the expression of target genes through the action of small RNA segments that bind to corresponding gene sequences. Not only is RNAi used to regulate gene expression within an organism, it also can combat viral infection by silencing the activity of viral genes required for the pathogen's replication.

Whether or not RNAi contributes to antiviral defense in mammals has been uncertain. The only previous demonstration - by researchers led by Shou-Wei Ding, PhD, a professor of Plant Pathology and Microbiology at UC Riverside and co-corresponding author of the current study - was done in embryonic stem cells and in newborn mice. Ding has been studying antiviral RNAi for more than two decades and also was the first to describe the action of the influenza virus protein NS1 in blocking RNAi in fruit flies. His team collaborated with investigators from Jeffrey's laboratory to investigate whether or not an RNAi response is induced in human and mouse cells infected with the influenza virus, one of many important viruses using RNA as its genetic material.

Their experiments verified that influenza-A-infected mature human cells do generate the small RNA segments used in RNAi but that virally-produced NS1 blocks the processing of those molecules into the complexes that bind to and silence their target genes. If cells were infected with an influenza A mutant lacking NS1, they proceeded to produce large number of the molecular complexes required for RNAi, which include a protein called Argonaute that slices through the target gene.

Experiments in cells with an inactivated form of Argonaute - which contributes only to the antiviral and not the gene regulation activity of RNAi - confirmed that they were observing an antiviral RNAi response. The observation that a viral protein called VP35, which is used by the Ebola and Marburg viruses to suppress RNAi, suggests that RNAi may also be active against those dangerous pathogens and other viruses that utilized RNA as their genetic code or in their replication cycle.

"We now need to assess more directly the role of antiviral RNAi in human infectious diseases caused by RNA viruses - which include Ebola, West Nile and Zika along with influenza - and how harnessing or boosting the antiviral RNAi response could be used to reduce the severity of these infections," says Jeffrey, who is an assistant professor of Medicine at Harvard Medical School. "Bringing the expertise of Dr. Ding's team, which specializes in the RNAi biology of lower organisms, together with my group that specializes in mammalian immunology was a perfect match." The teams will continue to work together to investigate some of these questions.
-end-
The co-lead authors of the Nature Microbiology paper are Yang Li, Jinfeng Lu and Shu-Wei Dong, University of California, Riverside; and Megha Basavappa, Massachusetts General Hospital. Additional co-authors are Alexander Cronkite, John Prior, Hans-Christian Reinecker and Sihem Cheloufi, MGH; Yanhong Han, Wan-Xiang Li and Fedor Karginov, UC Riverside; and Paul Hertzog, Hudson Institute of Medical Research, Victoria, Australia. Support for the study includes National Institutes of Health grants R01 AI107087, R01 AI52447 and R56 AI110579.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $800 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2016 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Influenza Articles:

Common cold combats influenza
As the flu season approaches, a strained public health system may have a surprising ally -- the common cold virus.
Scent-sensing cells have a better way to fight influenza
Smell receptors that line the nose get hit by Influenza B just like other cells, but they are able to clear the infection without dying.
New antivirals for influenza and Zika
Leuven researchers have deployed synthetic amyloids to trigger protein misfolding as a strategy to combat the influenza A and Zika virus.
Assessment of deaths from COVID-19, seasonal influenza
Publicly available data were used to analyze the number of deaths from seasonal influenza deaths compared with deaths from COVID-19.
Obesity promotes virulence of influenza
Obesity promotes the virulence of the influenza virus, according to a study conducted in mice published in mBio, an open-access journal of the American Society for Microbiology.
Influenza: combating bacterial superinfection with the help of the microbiota
Frenc researchers and from Brazilian (Belo Horizonte), Scottish (Glasgow) and Danish (Copenhagen) laboratories have shown for the first time in mice that perturbation of the gut microbiota caused by the influenza virus favours secondary bacterial superinfection.
Chemists unveil the structure of an influenza B protein
MIT chemists have discovered the structure of an influenza B protein called BM2, a finding that could help researchers design drugs that block the protein and help prevent the virus from spreading.
How proteins help influenza A bind and slice its way to cells
Researchers have provided new insight on how two proteins help influenza A virus particles fight their way to human cells.
Eating elderberries can help minimize influenza symptoms
Conducted by Professor Fariba Deghani, Dr. Golnoosh Torabian and Dr.
Mechanism to form influenza A virus discovered
A new study by Maria João Amorim's team, from the Gulbenkian Institute of Science, now reveals where the genomes of the influenza A virus are assembled inside infected cells.
More Influenza News and Influenza Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.