Nav: Home

NTU scientists build new ultrasound device using 3-D printing technology

December 05, 2016

Scientists from Nanyang Technological University, Singapore (NTU Singapore) have developed a new ultrasound device that produces sharper images through 3D printed lenses.

With clearer images, doctors and surgeons can have greater control and precision when performing non-invasive diagnostic procedures and medical surgeries.

The new device will allow for more accurate medical procedures that involve the use of ultrasound to kill tumours, loosen blood clots and deliver drugs into targeted cells.

This innovative ultrasound device is equipped with superior resin lenses that have been 3D printed.

In current ultrasound machines, the lens which focuses the ultrasound waves are limited to cylindrical or spherical shapes, restricting the clarity of the imaging.

With 3D printing, complex lens shapes can be made which results in sharper images. The 3D printed lenses allow ultrasound waves to be focussed at multiple sites or shape the focus specially to a target, which current ultrasound machines are unable to do.

Industry partners keen to develop commercial applications

The novel ultrasound device was developed by a multidisciplinary team of scientists, led by Associate Professor Claus-Dieter Ohl from NTU's School of Physical and Mathematical Sciences.

The ultrasound device had undergone rigorous testing and the findings have been published in Applied Physics Letters, a peer-reviewed journal by a leading global scientific institute - the American Institute of Physics.

With this breakthrough, the NTU team is now in talks with various industry and healthcare partners who are looking at developing prototypes for medical and research applications.

Associate Professor Claus-Dieter Ohl said, "In most medical surgeries, precision and non-invasive diagnosis methods are crucial. This novel device not only determines the focus of the wave but also its shape, granting greater accuracy and control to medical practitioners."

Overcoming current limitations

Ultrasound waves are produced by firing sound waves at a glass surface or 'lens' to create high-frequency vibrations.

In conventional ultrasound machines, the resulting heat causes the lens to expand rapidly, generating high frequency vibrations that produce ultrasound waves.

With lenses that are 3D printed, the new ultrasound device overcomes the limitations of glass. Customised and complex 3D printed lenses can be made for different targets which not only results in better imaging, but are cheaper and easier to produce.

"3D printing reinvents the manufacturing process, enabling the creation of unique and complex devices. In turn, the way medical devices are created needs to be rethought. This is an exciting discovery for the scientific community as it opens new doors for research and medical surgery," said Assoc Prof Ohl.

This breakthrough taps into an ultrasound market which is expected to grow to about US$ 6.9 billion by 2020. It is also expected to promote new medical techniques and research opportunities in health sciences such as surgery, and biotechnology.

For example, researchers could use the sound waves to measure elastic properties of cells in a petri dish, seeing how they respond to forces. This will be useful for example, to distinguish between harmful and benign tumour cells.

"This is a very promising breakthrough, potentially offering significant clinical benefits including to the field of cancer imaging. This technology has the potential to reduce image distortions and more accurately differentiate cancerous from non-cancerous soft tissue," said Adjunct Assistant Professor Tan Cher Heng, LKCMedicine Lead for Anatomy & Radiology and Senior Consultant with the Department of Diagnostic Radiology at Tan Tock Seng Hospital.
-end-
Media contact:

Nur Amin Shah
Assistant Manager (Media Relations)
Corporate Communications Office
Nanyang Technological University
Email: aminshah(at)ntu.edu.sg

About Nanyang Technological University, Singapore

A research-intensive public university, Nanyang Technological University, Singapore (NTU Singapore) has 33,500 undergraduate and postgraduate students in the colleges of Engineering, Business, Science, Humanities, Arts, & Social Sciences, and its Interdisciplinary Graduate School. It has a new medical school, the Lee Kong Chian School of Medicine, set up jointly with Imperial College London.

NTU is also home to world-class autonomous institutes - the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre for Environmental Life Sciences Engineering - and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI), Energy Research Institute @ NTU (ERI@N) and the Institute on Asian Consumer Insight (ACI).

Ranked 13th in the world, NTU has also been ranked the world's top young university for the last two years running. The University's main campus has been named one of the Top 15 Most Beautiful in the World. NTU also has a campus in Novena, Singapore's medical district.

For more information, visit http://www.ntu.edu.sg

Nanyang Technological University

Related Ultrasound Articles:

Ultrasound imaging of the brain and liver
Ultrasound is commonly used in diagnostic imaging of the body's soft tissues, including muscles, joints, tendons and internal organs.
Ultrasound for children with abdominal trauma
Despite evidence showing that the routine use of sonography in hospital emergency departments can safely improve care for adults when evaluating for possible abdominal trauma injuries, researchers at UC Davis Medical Center could not identify any significant improvements in care for pediatric trauma patients.
New approach uses ultrasound to measure fluid in the lungs
A team of engineering and medical researchers has found a way to use ultrasound to monitor fluid levels in the lung, offering a noninvasive way to track progress in treating pulmonary edema -- fluid in the lungs -- which often occurs in patients with congestive heart failure.
Optical generation of ultrasound via photoacoustic effect
Limitations of the piezoelectric array technologies conventionally used for ultrasonics inspired researchers to explore an alternative mechanism for generating ultrasound via light (the photoacoustic effect).
New method to detect ultrasound with light
A tiny, transparent device that fits into a contact lens can determine the speed of blood flow and oxygen metabolic rate at the back of the eye, helping to diagnose diseases such as macular degeneration.
More Ultrasound News and Ultrasound Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...