Princeton study uses 'Sherlock' to reveal how shared experiences shape our memories

December 05, 2016

We tend to think of our memories as unique, but a Princeton University-led study shows that memories are often shared rather than idiosyncratic.

The findings appear in the journal Nature Neuroscience. A PDF is available on request. The study included researchers from Princeton University (Hasson and Norman groups in the Princeton Neuroscience Institute), Stanford University, Johns Hopkins University and the University of Toronto.

Every person perceives the world in his or her own way and describes the past through the lens of individual history. However, human brains have much in common with one another in terms of anatomy and functional organization, and the capacity to share memories is essential for our ability to interact with others and form social groups. The processes by which shared experiences contribute to a community's collective memory have been extensively studied, but relatively little is known about how shared experiences shape memory in the brains of people who are engaged in spontaneous natural recollection. If two people freely describe the same event, how similar (across brains) are the neural codes elicited by that event?

In the new study, researchers show that when people watch a movie, specific brain activity patterns can be identified for each scene in the movie. What's more, each movie scene brain pattern is similar between people while they watch the movie, and similar between people when they speak from memory about the movie in their own words. This goes beyond showing that some part of the brain is "active" (reacting high or low) during some movie scene; the researchers show there is a distinct brain pattern, like a fingerprint, for each movie scene.

"Usually memory experiments use very constrained material like single words or static pictures, so we're also excited to show that it's possible to do all of this during a much more realistic experience -- watching an hour-long movie and talking freely about it for many minutes," says co-lead author Janice Chen, a postdoctoral research in Princeton's Neuroscience Institute.

The researchers found these shared activity patterns during recall in higher level regions of the brain, which appear to recieve and combine information from lower levels. In these high level regions, information seems to be more abstract. For example, whether you watch the scene where Sherlock is meeting Watson for the first time in the BBC TV series "Sherlock" or you speak about it from memory, the researchers found similar brain activity pattern that is unique to this event.

"The function of these high-level regions has been controversial for a long time; they are very active when people are resting, daydreaming, remembering their personal past, imagining the future, during internally focused thoughts, evaluating social situations and a whole lot more other types of tasks that psychologists have come up with," Chen says. "The notion that they contain specific activity codes for specific scenes/situations might be able to unite many of the other proposals."

When people have this shared experience, they have shared memories too -- the memory is a modified version of the original experience, and it changes in the same way across different people.

"We feel our memories are unique, but there is a lot in common between us in how we see and remember the world, even at the level of these brain activity patterns that we measure at the scale of millimeters," Chen says. "I think this is no accident: having a common framework for remembering makes it easier to communicate our memories to others, and that's a powerful thing that human beings can do. If I have a real experience, finding my way to the train station, for example, I can tell you about it and then you don't have to go through the hassle yourself. You can take advantage of what I learned -- my memory communicated to you -- and get to the train station, perhaps even getting there more efficiently than I did. In a way, you used my brain to process information from the world, taking a shortcut to acquiring knowledge."
Janice Chen, a Princeton postdoctoral researcher, is available to comment at

Broadcast studios: Princeton has TV and radio studios available for interviews. For more information, visit: or contact, (609) 258-7872.

Princeton University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to