Nav: Home

New neuron dynamics model better fitted to the biological reality

December 05, 2016

Neuroscientists are currently working diligently to understand the dynamics of thousands of coupled neurons. Understanding how they operate requires accurate models. The trouble is that each of the existing neuroscience models has its own shortcomings. Russian physicists have, for the first time, developed an effective method for solving the equations of a well-known theoretical neuroscience dynamic model and make it more biologically relevant. These findings have just been published in EPJ Plus by Eugene Postnikov and Olga Titkova from Kursk State University, Russia. They could not only help resolve problems in the neurosciences, but could also provide a deeper understanding of neuronal activity in the emerging sector of neurovascular dynamics, which describes the interplay between the brain's neurons and the blood flow.

The most biologically accurate neuroscience model is the 1952 Hodgkin-Huxley model (HH), which garnered its inventors the 1963 Nobel Prize in Physiology and Medicine. This model provides an understanding of neurons' dynamics as physical objects similar to electric circuits. By contrast, the most widespread theoretical model is the FitzHugh-Nagumo model (FHN), a qualitative model reproducing the main features of neuronal dynamics patterns without providing quantifiable biological information.

Previous attempts at modelling neuronal activity in actual brains involved combining the electrical currents within microscopic compartments for each of thousands of individuals neurons. Instead, the authors started from the macroscopic solutions of a simplified version of the biologically accurate HH model, which reflects the measurement in a nerve of the global voltage of neuron spikes evolving over time.

They then changed the parameters of the FHN model so that the key features of its graphical output matched those of the actual voltage curve recorded in the neuron. The authors demonstrated that, in order for the FHN model to resemble the biological reality as closely as possible, it needs to include dependence on external currents. This property provides valuable insights into the dynamics of coupled neuronal systems.
-end-
Reference:

E. B. Postnikov and O. V. Titkova (2016), A correspondence between the Hodgkin-Huxley and FitzHugh-Nagumo models revisited, Eur. Phys. J. Plus (2016) 131: 411, DOI 10.1140/epjp/i2016-16411-1

Springer

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...