Nav: Home

Game changer for organic solar cells

December 05, 2016

With a new technique for manufacturing single-layer organic polymer solar cells, scientists at UC Santa Barbara and three other universities might very well move organic photovoltaics into a whole new generation of wearable devices and enable small-scale distributed power generation.

The simple doping solution-based process involves briefly immersing organic semiconductor films in a solution at room temperature. This technique, which could replace a more complex approach that requires vacuum processing, has the potential to affect many device platforms, including organic printed electronics, sensors, photodetectors and light-emitting diodes. The researchers' findings appear in the journal Nature Materials.

"Because the new process is simple to use, general in terms of applicability and should be configurable into mass productions, it has the potential to greatly accelerate the widespread implementation of plastic electronics, of which solar cells are one example," said co-author Guillermo Bazan, director of UCSB's Center for Polymers and Organic Solids. "One can see impacts in technologies ranging from light-emitting devices to transistors to transparent solar cells that can be incorporated into building design or greenhouses."

Studied in many academic and industrial laboratories for two decades, organic solar cells have experienced a continuous and steady improvement in their power conversion efficiency with laboratory values reaching 13 percent compared to around 20 percent for commercial silicon-based cells. Though polymer-based cells are currently less efficient, they require less energy to produce than silicon cells and can be more easily recycled at the end of their lifetimes.

This new method, which provides a way of inducing p-type electrical doping in organic semiconductor films, offers a simpler alternative to the air-sensitive molybdenum oxide layers used in the most efficient polymer solar cells. Thin films of organic semiconductors and their blends are immersed in polyoxometalate solutions in nitromethane for a brief time -- on the order of minutes. The geometry of these new devices is unique as the functions of hole and electron collection are built into the light-absorbing active layer, resulting in the simplest single-layer geometry with few interfaces.

"High-performing organic solar cells require a multiple layer device structure," said co-author Thuc-Quyen Nguyen, a professor in UCSB's Department of Chemistry and Biochemistry. "The realization of single-layer photovoltaics with our approach will simplify the device fabrication process and therefore should reduce the cost. The initial lifetime testing of these single layer devices is promising. This exciting development will help transform organic photovoltaics into a commercial technology."

Organic solar cells are unique within the context of providing transparent, flexible and easy-to-fabricate energy-producing devices. These could result in a host of novel applications, such as energy-harvesting windows and films that enable zero-cost farming by creating greenhouses that support crops and produce energy at the same time.
-end-
Additional contributors to the research include Ming Wang of UCSB; Samuel Graham, Bernard Kippelen and Seth Marder of the Georgia Institute of Technology; Naoya Aizawa of Kyushu University in Japan; and Alberto Perrotta of Eindhoven University of Technology in the Netherlands.

The work was funded in part by a Department of the Navy, Office of Naval Research Award, through the MURI Center CAOP, Office of Naval Research Award and by the Department of Energy through the Bay Area Photovoltaic Consortium.

University of California - Santa Barbara

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.