Nav: Home

Scientists shed light on the climate-changing desert dust fertilizing our oceans

December 05, 2016

The way in which man-made acids in the atmosphere interact with the dust that nourishes our oceans has been quantified by scientists for the first time.

In the international study led by the University of Leeds, researchers have pinpointed how much phosphate "fertiliser" is released from dust depending on atmospheric acid levels.

Phosphorus is an essential nutrient for all life, and when it falls into the ocean, it acts as a fertiliser that stimulates the growth of phytoplankton and marine life.

The new study allows scientists to quantify exactly how much phosphate "fertiliser" is released from dust depending on atmospheric acid levels.

Dr Anthony Stockdale, from the School of Earth and Environment at Leeds, is lead author of the study. He said: "The ability to quantify these processes will now allow models to predict how pollution on a global scale modulates the amount of fertiliser released in airborne dust before it falls into the oceans.

"Many regions of the globe are limited by the amount of phosphorous available, so pollution can have a very important impact on marine ecosystems."

Fellow author Michael Krom, an Emeritus Professor from Leeds who is now at the University of Haifa, added: "If more carbon dioxide is taken up by marine plants due to fertilisation from acidified dust, it is possible that air pollution may have been inadvertently reducing the amount of greenhouse gases, while at the same time increasing the amount of plants and even fish in areas such as the Mediterranean Sea."

Co-author Professor Athanasios Nenes, of Georgia Institute of Technology, said the implications went beyond the carbon cycle and climate.

"The Mediterranean is one of many locations of the globe where pollution and dust mix frequently," he said. "This study points to one more way this interaction can affect marine life and the 135 million inhabitants of its coastline."

Professor Krom added: "The next step is to develop models which include this new pathway for increased plant growth in the ocean, in order to fully determine the effect on marine ecosystems and Earth's climate, considering a full suite of chemical, physical and biochemical processes."

Apatite: the desert dust nourishing our seas


Phosphorus is one of the essential elements for life and is a critical component of building blocks such as DNA. Dusts, from deserts such as the Sahara, are an important source of phosphorus to Earth's oceans.

The mineral-containing dust is generated in copious amounts during storms and is found throughout the atmosphere. Most of the phosphorus in this dust is in an insoluble form that the microscopic plants of the oceans - phytoplankton and diatoms - cannot get at. Known as apatite, the phosphorus in the dust is similar to the substance found in our teeth and bones.

Acids can be released naturally into the atmosphere from volcanic eruptions and from living organisms. But the burning of fossil fuels is currently the most significant source of atmospheric acids.

In the same way that acid produced by the bacteria in our mouths can cause tooth decay, so can acids in the atmosphere dissolve apatite and turn it into a form of phosphorus that can be used by marine organisms, the study authors said.

As well as researchers from Leeds, Georgia and Haifa, experts from three institutions in Greece, one in Israel, one in Germany and two others in the UK worked on the findings, published today in Proceedings of the National Academy of Science of the USA.
-end-
The University of Leeds team was funded by The Leverhulme Trust.

Further information
  • "Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans" is published in Proceedings of the National Academy of Sciences of the USA (PNAS)

  • A high-resolution NASA satellite image by Norman Kuring showing dust from western Africa pushing across the Atlantic Ocean on easterly winds is downloadable here: http://earthobservatory.nasa.gov/IOTD/view.php?id=83966

  • For a copy of the paper, or for interviews, contact University of Leeds Media Relations Manager Gareth Dant via g.j.dant@leeds.ac.uk or 0113 343 3996

The University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 31,000 students from 147 different countries, and a member of the Russell Group research-intensive universities.

We are a top 10 university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and positioned as one of the top 100 best universities in the world in the 2015 QS World University Rankings. We are The Times and The Sunday Times University of the Year 2017 http://www.leeds.ac.uk

University of Leeds

Related Phosphorus Articles:

Graphene heterostructures with black phosphorus, arsenic enable new infrared detectors
MIPT scientists and their colleagues from Japan and the U.S.
Recovering phosphorus from corn ethanol production can help reduce groundwater pollution
Dried distiller's grains with solubles (DDGS), a co-product from corn ethanol processing, is commonly used as feed for cattle, swine and poultry.
Chemists have managed to stabilize the 'capricious' phosphorus
An international team of Russian, Swedish and Ukrainian scientists has identified an effective strategy to improve the stability of two-dimensional black phosphorus, which is a promising material for use in optoelectronics.
Life could have emerged from lakes with high phosphorus
Life as we know it requires phosphorus, and lots of it.
Reassessing strategies to reduce phosphorus levels in the Detroit river watershed
In an effort to control the cyanobacteria blooms and dead zones that plague Lake Erie each summer, fueled by excess nutrients, the United States and Canada in 2016 called for a 40% reduction in the amount of phosphorus entering the lake's western and central basins, including the Detroit River's contribution.
Reduce, reuse, recycle: The future of phosphorus
Societies celebrate the discovery of this important element in 1669.
Lack of reporting on phosphorus supply chain dangerous for global food security
A new study from Stockholm University and University of Iceland shows that while Phosphorus is a key element to global food security, its supply chain is a black box.
Hydrogenation of white phosphorus leads way to safer chemical technology
White phosphorus is well-known for being a highly toxic compound with suffocating scent.
Rice cultivation: Balance of phosphorus and nitrogen determines growth and yield
Cluster of Excellence on Plant Sciences CEPLAS at the University of Cologne cooperates with partners from Beijing to develop new basic knowledge on nutrient signalling pathways in rice plants.
Ammonia by phosphorus catalysis
More than 100 years after the introduction of the Haber-Bosch process, scientists continue to search for alternative ammonia production routes that are less energy demanding.
More Phosphorus News and Phosphorus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.