Nav: Home

Why the flounder is flat

December 05, 2016

Flatfish are some of the most unusual vertebrate animals on our planet. They start out their life fully symmetrical, like any other fish, but undergo a spectacular metamorphosis where the symmetric larva is transformed into an asymmetric juvenile whose eyes end up on one side of the head.

As they relocate from open water to live and feed on the seabed, a second change occurs: The flounder's downward-facing side loses its skin pigment. These transformations require the flatfish do undergo radical change, both in physiology and behavior.

A mystery for Darwin already

The puzzle of how these changes could occur in the course of evolution has been intriguing scientists for a long time. Even Darwin was at a loss to explain the "remarkable peculiarity" of flatfish anatomy. An international team of researchers has now unlocked the decisive mechanisms driving the metamorphosis.

The team was led by biochemist Manfred Schartl, Head of the Department for Physiological Chemistry at the University of Würzburg's Biocenter, with his former Würzburg student and co-worker Songlin Chen from the Yellow Sea Fisheries Research Institute in China. The scientists have published their findings in the current issue of the journal Nature Genetics.

Two agents identified

"We recently sequenced the genome of both the Japanese flounder (Paralichthys olivaceus) and its distant relative, the tongue sole (Cynoglossus semilaevis)," Manfred Schartl explains. The comparison of the two genomes delivered the clue about the genetic bases of the radical physiological changes.

Focusing on the genes that were active during the metamorphosis, the scientists identified a key developmental trigger: retinoic acid. "Retinoic acid is responsible for the changes in skin pigments in flounders and interacts with a thyroid hormone that causes both eyes to migrate to one half of the body," Schartl sums up the central results of their work.

Light also plays a central role in this process as the researchers were surprised to find out during their work. They discovered that the same pigments that capture light in the eye are expressed in the skin of the flounder larvae. "They sense differences in brightness to adjust the concentration of retinoic acid," Schartl says. This in turn affects the thyroid hormone and promotes asymmetry generation.

Benefits for the fishing industry

Scientists of various research institutes in China participated in the study. They received financial support among others from the Chinese Ministry of Agriculture. In addition to scientific reasons, this has an economic background: Flounders are highly priced food fish and accordingly expensive. To meet the increasing demand, China operates huge fish farms that produce more than half of the world's farmed fish.

However, failures in metamorphosis are a frequent problem in flounder aquaculture accounting for many millions of dollars of losses in production.

Understanding how these unique creatures develop not only solves a long-standing evolutionary puzzle, it also serves the fishing industry and helps feed a continuously growing population.
-end-


University of Würzburg

Related Retinoic Acid Articles:

How plants synthesize salicylic acid
The pain-relieving effect of salicylic acid has been known for thousands of years.
Does weight loss surgery help relieve acid reflux?
Individuals who are obese often experience heartburn and other symptoms of acid reflux.
Nitric acid and ammonia electrosynthesis
The commercial synthesis methods for HNO3 and NH3 chemicals is Ostwald and Haber-Bosch process, respectively, but both of them are energy-intensive and high-emission.
Turning a porous material's color on and off with acid
Stable, color-changing compound shows potential for electronics, sensors and gas storage.
Erucic acid
Erucic acid occurs in vegetable oils and fats. It is a natural component of plant seeds of the Brassicaceae family (crucifers such as rape and mustard).
Light-induced modification of a carboxylic acid with an aminocyclopropenone
Researchers at Kanazawa University report in The Journal of Organic Chemistry that carboxylic acids, functional groups contained in biomolecules, drugs, and materials can be readily modified by light-induced organic reactions using an aminocyclopropenone.
Retinoic acid may improve immune response against melanoma
University of Colorado Cancer Center clinical trial results describe a promising strategy to remove one of melanoma's most powerful defenses: By adding retinoic acid to standard-of-care treatment, researchers were able to turn off myeloid-derived suppressor cells (MDSCs) that turn off the immune system, leading to more immune system activity directed at melanoma.
Scientists discovered organic acid in a protoplanetary disk
International team of scientists from Russia (including a research associate of the Kourovka Astronomical Observatory of Ural Federal University Sergei Parfenov), Germany, Italy, USA and France discovered relatively high concentration of formic acid in the protoplanetary disk.
How immune cells kill bacteria with acid
The first line of immune defense against invading pathogens like bacteria are macrophages, immune cells that engulf every foreign object that crosses their way and kill their prey with acid.
Acid zone in Chesapeake Bay identified
New paper identifies pH minimum zone in Chesapeake Bay. The area, 30-50 feet down, threatens the ability of shellfish such as oysters, clams and scallops to create and maintain their shells.
More Retinoic Acid News and Retinoic Acid Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.