Nav: Home

Virginia Tech geoscientists size-up early dinosaurs, find surprising variation

December 05, 2016

Look out your window, and you may see people of all ages and sizes roaming the street: a 6-foot-5-inch man walking beside a 4-foot-6-inch boy, for example, or a sprouting teen-ager who is much taller than a full-grown adult.

Virginia Tech geoscientists Christopher Griffin and Sterling Nesbitt discovered that this sort of variation in growth patterns in people despite their ages also occurred among early dinosaurs, and may have provided an advantage in surviving the harsh environment at the end of the Triassic Period approximately 201 million to 210 million years ago.

The discovery was published today (Dec. 5, 2016) in the Proceedings of the National Academy of Sciences.

"We found that the earliest dinosaurs had a far higher level of variation in growth patterns between individuals than crocodiles and birds, their closest living relatives," said Griffin, of Redding, California, the lead author and a first year doctoral student in the department of geosciences in the College of Science. "Not only were there many different pathways to grow from hatchling to adult, but there was an incredible amount of variation in body size, with some small individuals far more mature than some larger individuals, and some large individuals more immature than we would guess based on size alone."

The study focused on the skeletal changes that occurred during growth in the small carnivorous dinosaur Coelophysis (SEE-lo-FY-sis), one of the earliest dinosaurs. Hundreds of these animals, ranging from young, immature individuals to older, mature individuals, were buried together by a flooded river about 208 million years ago in present day New Mexico. Griffin examined 174 fossils from this site that are housed within natural history museum collections across North America.

"As these animals grew, muscle attachment scars formed on the limb bones, and the bones of the ankle, hips, and shoulder fused together, similar to how the skull bones of a human baby fuse together during growth," Griffin said. "Fossils of even a single partial skeleton of an early dinosaur are exceptionally rare, so to have an entire group of a single species that lived and died together provided an unparalleled opportunity to study early dinosaur growth like never before."

Using a technique known as ontogenetic sequence analysis, Griffin was able to reconstruct the growth sequences of Coelophysis and compare them with two bird and one crocodylian species, ultimately demonstrating that the earliest dinosaurs developed differently than their living relatives.

"Studies like this are a perfect demonstration of how fossils can help us understand the evolution of peculiar features and behaviors of modern animals," said Steve Brusatte, a paleontologist at the University of Edinburgh who was not involved in the research. "How dinosaurs grew may have been both the key to their early success and the reason that one particular unique subgroup, the birds, survives today."

This variation in early dinosaurs had been noticed for decades, but had usually been interpreted as a difference between males and females, with one sex identified by large muscle scars and fused bones.

However, statistical tests on the large Coelophysis sample showed no evidence that there were two groups in the sample, as would be expected given variation based on sex, said Griffin. Instead, individuals were arranged on a spectrum ranging from completely lacking scars and fused bones to having all of them, which is what would be expected if these differences were based on growth.

"Large variation in early dinosaurs may have allowed them to survive harsh environmental challenges like dry climate and high levels of carbon dioxide," said Nesbitt, an assistant professor of geosciences in the College of Science and affiliate with the university's Global Change Center. "Understanding why dinosaurs were so successful has been a great mystery and high variation may be one of the characteristics of dinosaurs that led to their success. However, it's difficult to determine whether this trait evolved in response to the environment, or was simply a stroke of luck that allowed these dinosaurs to survive and thrive and become the most dominate vertebrates on Earth for 150 million years."

Griffin, who graduated with his master's in geosciences from Virginia Tech in 2016, will continue his Ph.D. work with Nesbitt.
-end-


Virginia Tech

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.