Nav: Home

Wise plant analysis

December 05, 2016

Here's a reason not to peel tomatoes: A new method of plant analysis, developed at the Weizmann Institute of Science, has identified healthful antioxidants in tomato skins. In fact, as reported recently in Nature Communications, the new method reveals that biologically active plant substances typically associated with particular plant species - including those providing health benefits - are much more prevalent across the plant kingdom than was previously thought.

Plants produce, in total, an estimated million-plus organic chemicals, and each plant is believed to contain as many as 15,000, on average. To address the challenge of identifying the majority of such "specialized metabolites" in any given plant, Dr. Nir Shahaf and other members of a team headed by Prof. Asaph Aharoni of Weizmann's Plant and Environmental Sciences Department created a database of plant metabolites, called WeizMass. Shahaf then developed a computer tool, MatchWeiz, which makes it possible to identify the metabolites by checking experimental results from the metabolic analysis of a particular plant against the database.

Using these new tools, the scientists identified more than twenty metabolites that had never before been reported in tomatoes, including certain antioxidants in the skin. When the researchers then compared the analysis of tomatoes with that of duckweed and the research model Arabidopsis thaliana, they discovered an overlap in specialized metabolite content among these strikingly different species.

These and other results suggest that plant species are not as specialized in their metabolism as has been commonly assumed. In other words, valuable substances produced by exotic plants may potentially be derived from more common species. The Weizmann team has found, for instance, that both duckweed and Arabidopsis thaliana contain - albeit in smaller amounts - certain metabolites used in traditional medicine that until now have been isolated only from such oriental medicinal plants as maidenhair tree (Ginkgo biloba), ginger (Zingiber officinale) and rock pine (Orostachys japonicus).

"WeizMass and MatchWeiz can serve as extremely powerful tools for studying plant metabolism and identifying metabolites with useful biological activity, including potential drugs," says Aharoni.

WeizMass and MatchWeiz are not limited to the study of plant metabolites but may also be used to investigate the biology of other living systems, including animal and human metabolism.
-end-
The research team included staff scientists Drs. Ilana Rogachev and Sergey Malitsky, lab technician Dr. Sagit Meir, postdoctoral fellows Drs. Uwe Heinig and Shuning Zheng, and research students Maor Battat and Hilary Wyner, as well as Dr. Ron Wehrens of Wageningen University in the Netherlands.

Prof. Asaph Aharoni's research is supported by the Tom and Sondra Rykoff Family Foundation; the Leona M. and Harry B. Helmsley Charitable Trust; the Lerner Family Plant Science Research Fund; and Yossie and Dana Hollander, Israel. Prof. Aharoni is the recipient of the André Deloro Prize; and he is the incumbent of the Peter J. Cohn Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute of Science

Related Metabolism Articles:

Pulling the tablecloth out from under essential metabolism
Most organisms share the biosynthetic pathways for making crucial nutrients because it is is dangerous to tinker with them.
Metabolism: Beta cells under fire
Type 2 diabetes causes pathological changes in the beta cells.
New insights into the tumor metabolism
Tumors, inflammation and circulatory disorders locally disturb the body's acid-base balance.
Fighting malaria through metabolism
EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite.
Fighting malaria through mathematical analysis of parasite's metabolism
A new mathematical model, based on the deadliest malaria parasite, Plasmodium falciparum, could help develop antimalarials by identifying key metabolic targets, according to a study published in PLOS Computational Biology by Vassily Hatzimanikatis at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, and colleagues.
More Metabolism News and Metabolism Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...