Copper will replace toxic palladium and expensive platinum in the synthesis of medications

December 05, 2017

Chemists of Ural Federal University with colleagues from India proved the effectiveness of copper nanoparticles as a catalyst on the example of analysis of 48 organic synthesis reactions. One of the advantages of the catalyst is its insolubility in traditional organic solvents. This makes copper nanoparticles a valuable alternative to heavy metal catalysts, for example palladium, which is currently used for the synthesis of many pharmaceuticals and is toxic for cells.

"Copper nanoparticles are an ideal variant of a heterophasic catalyst, since they exist in a wide variety of geometric shapes and sizes, which directly affects the surface of effective mass transfer, so reactions in the presence of this catalyst are characterized by shorter reaction times, selectivity and better yields," says co-author Grigory Zyryanov, Doctor of Chemistry, Associate Professor of the Department of Organic and Biomolecular Chemistry of UrFU.

Copper nanoparticles are inexpensive since there are many simple ways to obtain them from cheap raw materials and these methods are constantly being modified. As a result, it is possible to receive a highly porous structure of catalyst based on copper nanoparticles with a pore size of several tens to several hundred nanometers. Due to the small particle size, the area of the catalytic surface is enormous. Moreover, due to the insolubility of copper nanoparticles, the reactions catalyzed by them go on the surface of the catalyst. After the reaction is completed, the copper nanoparticles that do not interact with the solvents are easily removed, which guarantees the absence of the catalyst admixture in the composition of the final product. These catalysts are already in demand for organic synthesis by the methods of "green chemistry". Its main principles are simplicity, cheapness, safety of production, recyclability of the catalysts.

One of the promising areas of application of the copper nanoparticle catalyst is, first of all, the creation of medical products using cross-coupling reactions. In 2010, for work in the field of palladium catalyzed cross-coupling reactions, the Nobel Prize in Chemistry was awarded to scientists from Japan and the USA: Richard Heck, Ei-ichi Negishi and Akira Suzuki. Despite worldwide recognition, palladium catalyzed cross-coupling reactions are undesirable for the synthesis of most medications due to the toxicity of palladium for living cells and the lack of methods for reliable removal of palladium traces from the final product. In addition to toxicity, the high cost of catalysts based on palladium, as well as another catalyst for pharmaceuticals, platinum, makes the use of copper nanoparticles economically and environmentally justified.
-end-


Ural Federal University

Related Pharmaceuticals Articles from Brightsurf:

A plot twist in pharmaceuticals: Single nanoparticles could pave the way for medicines on demand
For the first time, a single, twisted nanoparticle has been accurately measured and characterised in a lab, taking scientists one vital step closer to a time when medicines will be produced and blended on a microscopic scale.

New pharmaceuticals: public research combines efficiency with contained costs
Is the basic research that goes into the development of new drugs more efficiently conducted by public-sector scientists, pharmaceutical firms, or independent private laboratories?

New STM technique points way to new and purer pharmaceuticals
A research project led by chemists at the University of Warwick first used ultrahigh resolution scanning tunnelling microscopy to see the exact location of atoms and bonds within a molecule, and then employed these incredibly precise images to determine the interactions that bond molecules to one another.

Study describes cocktail of pharmaceuticals in waters in Bangladesh
An analysis revealed that water samples held a cocktail of pharmaceuticals and other compounds, including antibiotics, antifungals, anticonvulsants, anesthetics, antihypertensive drugs, pesticides, flame retardants and more.

Treating wastewater with ozone could convert pharmaceuticals into toxic compounds
With water scarcity intensifying, wastewater treatment and reuse are gaining popularity.

Study calls for improved sanitation and the environmental management of pharmaceuticals
Failure to ensure the environmental sustainability of growing patient access to medicines in developing economies could increase the risk of adverse environmental impacts, according to new research led by the University of Plymouth.

Chemicals for pharmaceuticals could be made cheaper and greener by new catalysts
High value chemicals used to make pharmaceuticals could be made much cheaper and quicker thanks to a series of new catalysts made by scientists at the University of Warwick in collaboration with GoldenKeys High-Tech Co., Ltd. in China.

Soaking up pharmaceuticals and personal care products from water
Medications excreted in the urine or dumped into the toilet can end up in the water supply, just like lotions or cosmetics that wash off the body and go down the sink or shower drain.

New study finds river wildlife contain cocaine, pharmaceuticals and pesticides
For the first time, researchers at King's College London, in collaboration with the University of Suffolk, have found a diverse array of chemicals, including illicit drugs and pesticides in UK river wildlife.

Metal-free catalyst to convert aldehyde into ketone, a basic structure of pharmaceuticals
We succeeded in synthesizing a ketone, a basic structure of many pharmaceuticals, from an aldehyde and a carboxylic acid using N-heterocyclic carbene catalyst under mild conditions.

Read More: Pharmaceuticals News and Pharmaceuticals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.