Meteorite analysis shows reduced salt is key in Earth's new recipe

December 05, 2017

Scientists have found the halogen levels in the meteorites that formed the Earth billions of years ago are much lower than previously thought.

The research was carried out by international team of researchers, led by the Universities of Manchester and Oxford, and has recently been published in Nature.

Halogens such as Chlorine, Bromine and Iodine, form naturally occurring salts which are essential for most life forms - but too much can prohibit life. When previously comparing halogen levels in meteorites that formed the planet, the Earth should have unhealthy levels of salt.

Many theories have been put forward to explain the mystery of why, instead, Earth salt concentrations are 'just right'. The answer turns out to be quite simple - previous estimates meteorites were just too high.

Using a new analytical technique, the team looked at different kinds of chondrite meteorites, a type of primitive meteorite approximately 4.6 billion years old.

Dr Patricia Clay, lead author of the study from the University of Manchester's School of Earth and Environmental Sciences (SEES), said: 'These kinds of meteorites are remnants of the solar nebula, a molecular cloud made up of interstellar dust and hydrogen gas that predates our Solar System. Studying them provides important clues for our understanding of the origin and age of the Solar System.'

How the Earth acquired its volatile elements has long interested scientists. To answer the question the team re-examined one of the largest collection of meteorites assembled for this type of study.

They found that previous estimates of halogen levels in meteorites were too high, but the technique used by the team helped them avoid contaminated sources.

Dr Clay explains: "No single model of Earth formation using the old meteorite measurements could easily account for the halogens we see today. Some of these models needed catastrophic planetary wide removal of halogens without affecting related elements - which just didn't make sense."

Professor Ray Burgess, co-author and also from The University of Manchester, added: "The new simplified model we have developed is a big step forward in understanding how key ingredients essential for life were brought to our planet, including water that probably helped distribute the halogens between the planetary interior and surface."

The results were a huge surprise, and time after time each meteorite measured was found to have halogen levels far lower than previously thought, and remarkably consistent between different types of meteorites.

Professor Chris Ballentine, co-author from the University of Oxford and who designed the study, added: "Another big surprise of the study was just how uniform the halogen content of very different meteorites actually is - this is an incredibly important picture into the processes that formed the meteorites themselves - but also means that whatever meteorites formed the earth the halogen ingredients for Earth's recipe remains the same."
-end-
About The University of Manchester

The University of Manchester, a member of the prestigious Russell Group, is the UK's largest single-site university with 39,700 students and is consistently ranked among the world's elite for graduate employability.

The University is also one of the country's major research institutions, rated fifth in the UK in terms of 'research power' (REF 2014). World-class research is carried out across a diverse range of fields including cancer, advanced materials, addressing global inequalities, energy and industrial biotechnology.

No fewer than 25 Nobel laureates have either worked or studied here.

It is the only UK university to have social responsibility among its core strategic objectives, with staff and students alike dedicated to making a positive difference in communities around the world.

Manchester is ranked 38th in the world in the Academic Ranking of World Universities 2017 and 6th in the UK. The University had an annual income of almost £1 billion in 2015/16.

Visit http://www.manchester.ac.uk for further information.

Facts and figures: http://www.manchester.ac.uk/discover/facts-figures/

Research Beacons: http://www.manchester.ac.uk/research/beacons/

News and media contacts: http://www.manchester.ac.uk/discover/news/

University of Manchester

Related Meteorites Articles from Brightsurf:

Meteorites show transport of material in early solar system
New studies of a rare type of meteorite show that material from close to the Sun reached the outer solar system even as the planet Jupiter cleared a gap in the disk of dust and gas from which the planets formed.

Unexpected abundance of hydrogen in meteorites reveals the origin of Earth's water
Meteorite material presumed to be devoid of water because it formed in the dry inner Solar System appears to have contained sufficient hydrogen to have delivered to Earth at least three times the mass of water in its oceans, a new study shows.

Earth may always have been wet
The Earth is the only planet known to have liquid water on its surface, a fundamental characteristic when it comes to explaining the emergence of life.

Surrey academics develop a new method to determine the origin of stardust in meteorites
Scientists have made a key discovery thanks to stardust found in meteorites, shedding light on the origin of crucial chemical elements.

Iron-rich meteorites show record of core crystallization in system's oldest planetesimals
New work uncovers new details about our Solar System's oldest planetary objects, which broke apart in long-ago collisions to form iron-rich meteorites.

How stony-iron meteorites form
Meteorites give us insight into the early development of the solar system.

X-rays recount origin of oddball meteorites
X-ray experiments at Berkeley Lab played a key role in resolving the origin of rare, odd meteorites that have puzzled scientists since their discovery a half-century ago.

An origin story for a family of oddball meteorites
Study suggests a family of rare meteorites likely came from an early planetesimal with a magnetic core.

Ancient asteroid impacts created the ingredients of life on Earth and Mars
A new study reveals that asteroid impact sites in the ocean may possess a crucial link in explaining the formation of the essential molecules for life.

4-billion-year-old nitrogen-containing organic molecules discovered in Martian meteorites
Scientists exploring Mars and analysing Martian meteorite samples have found organic compounds essential for life: nitrogen-bearing organics in a 4-billion-year-old Martian meteorite.

Read More: Meteorites News and Meteorites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.