Combination strategy could hold promise for ovarian cancer

December 05, 2017

Johns Hopkins Kimmel Cancer Center researchers demonstrated that mice with ovarian cancer that received drugs to reactivate dormant genes along with other drugs that activate the immune system had a greater reduction of tumor burden and significantly longer survival than those that received any of the drugs alone.

The study already spurred a clinical trial in ovarian cancer patients. The investigators, led by graduate student Meredith Stone, Ph.D.; postdoctoral fellow Kate Chiappinelli, Ph.D.; and senior author Cynthia Zahnow, Ph.D., believe it could lead to a new way to attack ovarian cancer by strengthening the body's natural immune response against these tumors. It was published in the Dec. 4, 2017, issue of the Proceedings of the National Academy of Sciences.

Ovarian cancer is currently the leading cause of death from gynecological malignancies in the U.S. "We've taken two types of therapies that aren't very effective in ovarian cancer and put them together to make them better at revving up the immune system and attacking the tumor," says Zahnow, associate professor of oncology at the Johns Hopkins Kimmel Cancer Center.

Zahnow says that a class of immunotherapy drugs known as checkpoint inhibitors, currently being studied at the Bloomberg~Kimmel Institute for Cancer Immunotherapy, helps the immune system recognize cancers and fight them off. The drugs have shown success in treating melanoma, nonsmall cell lung cancer and renal cell cancers, but they have had only modest effects on ovarian cancer.

Similarly, another class of drugs known as epigenetic therapies has been used to treat some types of cancer by turning on genes that have been silenced-- either by the presence of chemical tags, known as methyl groups, or by being wound too tightly around protein spools, known as histones--but these drugs haven't been effective against ovarian cancer either.

Zahnow and her colleagues became inspired to investigate a new way to treat ovarian cancer by two recent publications from their group that showed epigenetic drugs turn on immune signaling in ovarian, breast and colon cancer cells (Li et al., Oncotarget 2014). These immune genes are activated when epigenetic therapy turns on segments of ancient retroviruses that activate type 1 interferon signaling in the cells (Chiappinelli et al., Cell 2015). Stone, Chiappinelli and Zahnow wanted to know if this increase in immune signaling could lead to the recruitment of tumor killing immune cells to the cancer.

Zahnow and her colleagues worked with a mouse model of the disease in which mouse ovarian cancer cells are injected into the animals' abdomens to mimic human disease. These cells eventually develop into hundreds of small tumors, which cause fluid to collect within the abdomen, a condition known as ascites. Floating in this fluid is a milieu of both cancer and immune cells, offering a convenient way to keep tabs on both the tumor and the animals' immune response.

The researchers started by pretreating the ovarian cancer cells outside of the animal in a culture dish with a DNA methyltransferase inhibitor (a drug that knocks methyl groups from DNA) called 5-azacytidine (AZA). After injecting these cells into mice, the researchers found that animals receiving the pretreated cells had significantly decreased ascites or tumor burden and significantly more cancer-fighting immune cells in the ascites fluid compared to those injected with untreated cells. These cells also had increased activity in a variety of genes related to immune response. Pretreating these cells with histone deacetylase inhibitors (HDACis), which help DNA uncoil from histones, didn't affect the animals' ascites or boost their immune response.

These early findings suggested that changes in gene activity induced by AZA cause the tumor cells themselves to summon immune cells to their location. In addition, when the researchers transplanted untreated cells into mice and treated the animals with both AZA and an HDACi, significantly more immune cells were in the ascites fluid, suggesting that the HDACi was acting on the animals' immune systems. These mice also had decreased ascites, lower tumor burden and longer survival than mice that received just AZA.

When the researchers treated the mice with both AZA and an HDACi, along with an immune checkpoint inhibitor, they got the greatest response--the highest decreases in ascites and tumor burden, and the longest survival. Further experiments using immunocompromised mice showed that the immune system is pivotal to the action of these drugs, rather than the drugs themselves acting directly to kill tumor cells.

"We think that AZA and the HDACis are bringing the soldiers, or immune cells, to the battle. But the checkpoint inhibitor is giving them the weapons to fight," says Zahnow, who also collaborated with epigenetics scientist Stephen Baylin, M.D., on this project.

The preclinical data generated through this study is already being used to help patients with ovarian cancer through an ongoing clinical trial to test the effectiveness of combining AZA and a checkpoint inhibitor. Future trials may add an HDACi to determine if it affects outcomes.

"Combining epigenetic therapy and a checkpoint blocker leads to the greatest reduction in tumor burden and increase in survival in our mouse model and may hold the greatest promise for our patients," says Zahnow.
-end-
In addition to Zahnow, Stone, Chiappinelli and Baylin, other participants include Huili Li, Lauren M. Murphy, Meghan E. Travers, Michael J. Topper, Dimitrios Mathios, Michael Lim, Ie-Ming Shih, Tian-Li Wang Chien-Fu Hung of Johns Hopkins; Vipul Bhargava, Karla R. Weihagen, Glenn Cowley, and Kurtis E. Bachman of Janssen Research & Development; and Reiner Strick and Pamela L. Strissel of University-Clinic Erlangen.

The research was supported by grants from the Defense Health Program, through the Department of Defense Ovarian Cancer Research Program, under Teal Innovator Award OC130454/W81XWH-14-1-0385; the National Cancer Institute under Awards F32CA183214 and K99CA204592 and Award P30CA006973; Janssen; the Samuel Waxman Cancer Research Foundation Collaboration for a Cure Grant; Irving Hansen Fund; and Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Johns Hopkins Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.