Hyperbaric oxygen therapy may alleviate symptoms of Alzheimer's Disease

December 05, 2017

A new Tel Aviv University study reveals that hyperbaric oxygen treatments may ameliorate symptoms experienced by patients with Alzheimer's disease.

"This revolutionary treatment for Alzheimer's disease uses a hyperbaric oxygen chamber, which has been shown in the past to be extremely effective in treating wounds that were slow to heal," says Prof. Uri Ashery of TAU's Sagol School of Neuroscience and the Faculty of Life Sciences, who led the research for the study. "We have now shown for the first time that hyperbaric oxygen therapy can actually improve the pathology of Alzheimer's disease and correct behavioral deficits associated with the disease.

"This research is extremely exciting as it explores a new therapy that holds promise as a treatment of Alzheimer's disease," Prof. Ashery says.

The research was conducted by PhD student Ronit Shapira of TAU's Faculty of Life Sciences; Prof. Beka Solomon and Dan Frenkel of TAU's Sagol School of Neuroscience and Faculty of Life Sciences; and Prof. Shai Efrati of TAU's Sackler Faculty of Medicine, Sagol School of Neuroscience and Assaf-Harofeh Medical Center. It was published in the journal Neurobiology of Aging.

Patients who undergo hyperbaric oxygen therapy for different conditions breathe in pure oxygen in a pressurized room or chamber. In this chamber, the air pressure is increased to twice that of normal air. Under these conditions, oxygen solubility in the blood increases and is transported by blood vessels throughout the body. The added oxygen stimulates the release of growth factors and stem cells, which themselves promote healing.

The TAU scientists used a mouse model of Alzheimer's disease and built a custom-made hyperbaric oxygen chamber suitable for small animals. Then, over the course of 14 days, the team administered hyperbaric oxygen treatment to the mice for one hour per day. After 14 days, the mice underwent a series of behavioral tests as well as tissue biochemical tests to understand how hyperbaric oxygen treatment affects the pathological hallmarks associated with Alzheimer's disease.

The treatment reduced behavioral deficiencies compared to the non-transgenic control mice, reduced plaque pathology by 40%, and reduced neuroinflammation by about 40%.

"There are serious clinical implications to this research," says Shapira, principal investigator of the study. "Hyperbaric oxygen treatment is a well-tolerated and safe therapy used in clinics around the world for various medical conditions, including neurological disorders. Although further research is needed to elucidate the underlying beneficial mechanisms of the therapy and to evaluate its beneficial effects in various Alzheimer patient populations, it holds great potential for the treatment of Alzheimer's disease."

"In this hallmark study, the beneficial physiological effects of hyperbaric oxygen therapy were directly demonstrated on Alzheimer-affected brain tissue," says Prof. Efrati. "We assume that the main challenge in human use will be to initiate the treatment at early stages before significant amount of brain tissue is lost."

The researchers are currently testing the effectiveness of hyperbaric oxygen treatment on an additional mouse model of Alzheimer's disease to investigate the mechanisms underlying its impact on the disease.
-end-
American Friends of Tel Aviv University (AFTAU) supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. For three years in a row, TAU ranked 9th in the world, and first in Israel, for alumni going on to become successful entrepreneurs backed by significant venture capital, a ranking that surpassed several Ivy League universities. To date, 2,400 patents have been filed out of the University, making TAU 29th in the world for patents among academic institutions.

American Friends of Tel Aviv University

Related Neuroscience Articles from Brightsurf:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.

The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.

Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.

Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.

The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.

Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.

Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.

Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.

The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.

Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.

Read More: Neuroscience News and Neuroscience Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.