Mitochondrial protein in cardiac muscle cells linked to heart failure, study finds

December 05, 2017

ATLANTA--Reducing a protein found in the mitochondria of cardiac muscle cells initiates cardiac dysfunction and heart failure, a finding that could provide insight for new treatments for cardiovascular diseases, a study led by Georgia State University has shown.

The researchers discovered that reducing an outer mitochondrial membrane protein, FUN14 domain containing 1 (FUNDC1), in cardiac muscle cells, also known as cardiomyocytes, activates and worsens cardiac dysfunction. Also, disrupting how FUNDC1 binds to a particular receptor inhibited the release of calcium from another cell structure, the endoplasmic reticulum (ER), into the mitochondria of these cells and resulted in mitochondrial dysfunction, cardiac dysfunction and heart failure. The findings are published in the journal Circulation.

Mitochondria play numerous roles in the body, including energy production, reactive oxygen species generation and signal transduction. Because the myocardium, the muscular wall of the heart, is a high-energy-demand tissue, mitochondria play a central role in maintaining optimal cardiac performance. Growing evidence suggests deregulated mitochondrial activity plays a causative role in cardiovascular diseases.

In the body, mitochondria and ER are interconnected and form their own endomembrane networks. The points where mitochondria and ER make physical contact and communicate are known as mitochondria-associated ER membranes (MAMs). MAMs play a major role in regulating the transfer of calcium between ER and mitochondria. Dysfunctional MAMs are involved in several neuronal disorders, including Alzheimer's disease and Parkinson's disease. Until now, the role of MAMs in cardiac pathologies has not been well understood.

"Our study found the formation of MAMs mediated by the mitochondrial membrane protein FUNDC1 was significantly suppressed in patients with heart failure, which provides evidence that FUNDC1 and MAMs actively participate in the development of heart failure," said Dr. Ming-Hui Zou, director of the Center for Molecular and Translational Medicine at Georgia State and a Georgia Research Alliance Eminent Scholar in Molecular Medicine. "This work has important clinical implications and provides support that restoring proper function of MAMs may be a novel target for treating heart failure."

The researchers used mouse neonatal cardiomyocytes, mice with a genetic deletion of the FUNDC1 gene, control mice with no genetic deficiencies and the cardiac tissues of patients with heart failure.

The cardiac functions of the mice were monitored using echocardiography at 10 weeks of age. Mice with the genetic deletion of FUNDC1 had markedly reduced ventricular filling velocities, prolonged left ventricular isovolumic relaxation time, diastolic dysfunction, decreased cardiac output (which indicates impaired systolic functions) and interstitial fibrosis of the myocardium, among other issues. The mitochondria in the hearts of mice with FUNDC1 gene deletion were larger and more elongated, a 2.5-fold increase of size compared to mitochondria in the control mice.

To determine if FUNDC1 reduction occurred in human hearts and contributed to heart failure in patients, the researchers examined four heart specimens from heart failure patients and four heart specimens from control donors. They found the levels of FUNDC1 were significantly reduced in patients with heart failure compared to control donors. Also, the contact between ER and mitochondria in failed hearts was significantly reduced. In addition, the mitochondria in heart failure hearts were more elongated compared to those in control donors.
-end-
Co-authors of the study include Drs. Zhonglin Xie, Zejun Ma, Ye Ding, Qilong Wang, Qiulun Lu and Shengnan Wu of the Center for Molecular and Translational Medicine at Georgia State and Drs. Kai Huang and Xiaoxiang Mao of the Wuhan Union Hospital of Huazhong University of Science and Technology.

The study is funded by the American Heart Association and the National Institutes of Health's National Heart, Lung and Blood Institute, National Cancer Institute and National Institute on Aging.

Georgia State University

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.