Researchers advance biomass transformation process

December 05, 2018

Biomass can serve as a renewable source for both energy and carbon. ABE (acetone, n-butanol, and ethanol) fermentation broth as a biomass-derived source of fuels and chemicals has received a lot of attention for several decades. However, the crude fermentation broth contains low concentrations of oxygenates, limiting its practical applications.

Thus, it is pivotal to develop a highly efficient water-resistant catalyst to directly and selectively convert crude aqueous oxygenate mixtures to value-added chemicals; water-immiscible ones (easy separation after reaction) are especially of great importance. However, the efficiency and selectivity of the transformation process for biomass-derived intermediates remains a major techno-economic challenge.

Prof. WANG Feng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and his colleagues from Peking University recently reported an efficient and novel catalytic method for the conversion of aqueous biomass fermentation broth to a water-immiscible product. Their finding was published in Nature Communications.

They developed a strategy capable of transforming ~70% of carbon in an aqueous ABE fermentation mixture to 4-heptanone (4-HPO), catalyzed by tin-doped ceria (Sn-ceria) with a selectivity as high as 86%. While Sn-ceria is a versatile catalyst for dehydrogenation, the Guerbet alcohol reaction, condensation, and esterification reactions, all these reactions, involving acid-base catalysis and redox ones, relay and generate 4-HPO with high selectivity (Fig. (A)). 4-HPO is a value-added intermediate and can be used to produce jet fuel and fine chemicals (Fig. (B)).

Furthermore, water, which is detrimental to the reported catalysts for ABE conversion, was beneficial for producing 4-HPO. The excellent catalytic performance of tin-doped ceria is due to the highly dispersed tin species and oxygen vacancies of ceria.

"This strategy offers a route for highly efficient organic carbon utilization," said WANG. "It can potentially integrate biological and chemical catalysis platforms for the robust and highly selective production of value-added chemicals."
-end-
The research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, the National Key R&D Program of China, and the Natural Science Foundation of China.

Chinese Academy of Sciences Headquarters

Related Biomass Articles from Brightsurf:

Bound for the EU, American-made biomass checks the right boxes
A first-of-its-kind study published in the journal Scientific Reports finds that wood produced in the southeastern United States for the EU's renewable energy needs has a net positive effect on US forests--but that future industry expansion could warrant more research.

The highest heat-resistant plastic ever is developed from biomass
The use of biomass-derived plastics is one of the prime concerns to establish a sustainable society, which is incorporated as one of the Sustainable Development Goals.

Laser technology measures biomass in world's largest trees
Laser technology has been used to measure the volume and biomass of giant Californian redwood trees for the first time, records a new study by UCL researchers.

Inducing plasma in biomass could make biogas easier to produce
Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with challenges.

Microbes working together multiply biomass conversion possibilities
Non-edible plants are a promising alternative to crude oil, but their heterogenous composition can be a challenge to producing high yields of useful products.

Evergreen idea turns biomass DNA into degradable materials
A Cornell-led collaboration is turning DNA from organic matter -- such as onions, fish and algae -- into biodegradable gels and plastics.

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.

Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.

Read More: Biomass News and Biomass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.