Nav: Home

Multifunctional dream ceramic matrix composites are born!

December 05, 2018

Researchers at Osaka University produced composites consisting of alumina (AI2O3) ceramics and titanium (Ti), namely AI2O3/Ti composites. They designed a percolation structure for forming a continuous conduction pathway by dispersing fine-sized Ti particles into an AI2O3 matrix, optimizing the particle size of metallic Ti powder and sintering processes. They improved fracture toughness and electrical conductivity of AI2O3/Ti composites while simultaneously giving them photocatalytic ability through chemical and/or thermal treatment. (Figure 1)

Various types of metal-ceramic composites have been researched and developed, but their combination and fine structures were limited. In particular, the combination of ceramics such as alumina used as matrices and titanium, a biocompatible metal, has a problem in that the structure of composites is not uniform because of the high reactivity of titanium (oxidation happens and chemical compounds are produced) and the large particle size of commercially-available Ti powder (several tens of micrometers). Thus, it was difficult to produce composites that have advantages of both ceramics and metal: that is, composites in which metallic Ti powder is homogeneously dispersed in the matrix and has excellent mechanical properties.

The group prepared ball-milled titanium hydride (TiH2) fine powder mixed with alumina powder, producing AI2O3/Ti composites using a method based on the in situ decomposition of TiH2 to Ti and simultaneous sintering with Al2IO3, which process inhibited AI2O3 dissolution into Ti by diffusion through interfacial reaction between AI2O3 and Ti during sintering. As a result, they minimized reactivity of Ti and AI2O3 to disperse significantly finer and more homogeneous Ti (compared to those produced with conventional methods) in AI2O3, realizing composites with a percolation structure by controlling the content of added Ti.

In this way, the group improved fracture toughness of inherently brittle AI2O3 through dispersion of fine Ti particles into AI2O3 and, due to percolation of metallic Ti particles, contributing electrical conductivity to insulator ceramics AI2O3. They also demonstrated that AI2O3 ceramics could be machined by electrical discharge machining like metals. (Usually, ceramics are not electrically conductive.) In addition, they formed a nano-porous- or nanorod- structured titania layer on the surface of the composite by selectively oxidizing Ti via NaOH treatment and/or heat treatment. Through this, they demonstrated that the photocatalytic ability to break down organic substances could also simultaneously be given to AI2O3/Ti composites.

Group leader Tohru Sekino says, "AI2O3/Ti composites will be used as ceramic matrix composites that have excellent mechanical properties and can be machined by electrical discharge machining. They will also be used for industrial products and biomaterials as new multi-functional composites that have an active surface layer with antibacterial properties and a photocatalytic ability to break down pollutants."
-end-
Other Related Articles

Article: Formation of vertically grown 1D TiO2 nanorods on the surface of AI2O3/Ti composites by simple heat treatment and their photocatalytic performance
Journal: Journal of the Ceramic Society of Japan
DOI: 10.2109/jcersj2.18133
Authors: Shengfang SHI, Tomoyo GOTO, Sung Hun CHO, Hideki HASHIMOTO, Shu YIN, Soo Wohn LEE and Tohru SEKINO

Article: Combinative effects of Y2O3 and Ti on AI2O3 ceramics for optimizing mechanical and electrical properties
Journal: Ceramics International
DOI: 10.1016/j.ceramint.2018.07.054
Authors: Shengfang Shi, Sunghun Cho, Tomoyo Goto, Takafumi Kusunose, and Tohru Sekino

Article: Fine Ti-dispersed AI2O3 composites and their mechanical and electrical properties
Journal: Journal of the American Ceramic Society
DOI: 10.1111/jace.15472
Authors: Shengfang Shi, Sunghun Cho, Tomoyo Goto, Tohru Sekino

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum. Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Titanium Articles:

First view of hydrogen at the metal-to-metal hydride interface
University of Groningen physicists have visualized hydrogen at the titanium/titanium hydride interface using a transmission electron microscope.
The properties of thin titanium oxide films have been studied
Some titanium oxides are known for their unique properties, such as increased photocatalytic activity (i.e. they effectively use light to speed up chemical reactions).
Adding copper strengthens 3D-printed titanium
Successful trials of titanium-copper alloys for 3D printing could kickstart a new range of high-performance alloys for medical device, defence and aerospace applications.
Fatigue-resistant, high-performance cooling materials enabled by 3D printing
High-performance solid-state elastocaloric cooling materials with exceptional fatigue resistance are made possible by 3D printing a nickel-titanium based alloy, researchers report.
Common food additive found to affect gut microbiota
Experts call for better regulation of a common additive in foods and medicine, as research reveals it can impact the gut microbiota and contribute to inflammation in the colon, which could trigger diseases such as inflammatory bowel diseases and colorectal cancer.
Layering titanium oxide's different mineral forms for better solar cells
A Japan-based research team led by Kanazawa University improved the efficiency of a new type of solar cell with a double layer consisting of pure anatase and brookite, two different mineral forms of titanium oxide.
Penn engineer's 'metallic wood' has the strength of titanium and the density of water
In a new study published in Nature Scientific Reports, researchers at the University of Pennsylvania's School of Engineering and Applied Science, the University of Illinois at Urbana-Champaign, and the University of Cambridge have built a sheet of nickel with nanoscale pores that make it as strong as titanium but four to five times lighter.
Alcohols as carbon radical precursors
Carbon radicals are attractive intermediates for organic synthesis because of their diversity and high reactivities.
Aluminum on the way to titanium strength
NUST MISIS scientists have proposed a technology that can double the strength of composites obtained by 3D printing from aluminum powder, and advance the characteristics of these products to the quality of titanium alloys: titanium's strength is about six times higher than that of aluminum, but the density of titanium is 1.7 times higher.
A RUDN chemist created nanoreactors to synthesize organic substances under visible light
A RUDN chemist developed a new type of photocatalysts -- nanostructures from titanium dioxide.
More Titanium News and Titanium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.