Nav: Home

Molecular adlayer produced by dissolving water-insoluble nanographene in water

December 05, 2018

Even though nanographene is insoluble in water and organic solvents, Kumamoto University (KU) and Tokyo Institute of Technology (Tokyo Tech) researchers have found a way to dissolve it in water. Using "molecular containers" that encapsulate water-insoluble molecules, the researchers developed a formation procedure for a nanographene adlayer, a layer that chemically interacts with the underlying substance, by just mixing the molecular containers and nanographene together in water. The method is expected to be useful for the fabrication and analysis of next-generation functional nanomaterials.

Graphene is a single layer of carbon atoms arranged in sheet form. It is lighter than metal with superior electrical characteristics, and has attracted attention as a next-generation material for electronics. Structurally-defined nano-sized graphene, i.e. nanographene, has different physical properties from graphene. Although nanographene is an attractive material for organic semiconductors and molecular devices, its molecular group is insoluble in many solvents, and its fundamental physical properties are not sufficiently understood.

Micelles can be used to dissolve water-insoluble substances in water. Soap is a familiar example of a micelle. When soap micelles mix with water, bubbles that are hydrophobic on the inside and hydrophilic on the outside begin to form. These bubbles trap oil-based dirt and make it easier to wash away with water. Dr. Michito Yoshizawa of Tokyo Tech used this property of micelles to develop amphipathic (molecules that have both hydrophobic and hydrophilic properties) micelle capsules. Expanding upon Dr. Yoshizawa's work, researchers at KU developed a micelle capsule for insoluble nanographene compound groups.

The KU researchers utilized micelle capsules composed of specific chemical structures (anthracene) as molecular containers and skillfully made use of molecule interactions to efficiently intake nanographene molecules into the capsules. The micelle capsules act like presents from Santa Claus, the highly hydrophobic nanographene molecules (the toy) inside the capsule (the box/wrapping paper) are transported to the surface of the gold (Au) substrate underwater (the Christmas tree). The micelle capsules then undergo a change of molecular state (equilibrium) in the acidic aqueous solution. The nanographene that was inside the micelle is adsorbed and organized on the Au substrate, since without its 'protective wrapping' it is not dissolved in water.

Using an Electrochemical Scanning Tunneling Microscope (EC-STM), which resolves material surfaces at the atomic level, the researchers successfully observed three types of nanographene molecules (ovalene, circobiphenyl, and dicoronylene) in molecular-scale resolution for the first time in the world. The images showed that the molecules adsorbed on the Au substrate were regularly aligned and formed a highly ordered 2D molecular adlayer.

This method of molecular adlayer fabrication uses molecules with solubility limitations but it can also be used for other types of molecules as well. Moreover, it should attract attention as an eco-friendly technology since it does not require the use of harmful organic solvents. The research team expects it to open new doors in nanographene science research.

"A couple of years ago, KU faced significant challenges due to the 2016 Kumamoto earthquakes. While we were recovering from this disaster, Tokyo Tech accepted senior undergraduate students from our laboratory as special auditors. This collaborative research project started from that point. The results of this work are a direct result of Tokyo Tech's rapid response and kind cooperation during the difficult situation we faced here in Kumamoto. We really appreciate their generous assistance," said project leader Associate Professor Soichiro Yoshimoto of Kumamoto University. "The method we developed can also be applied to a group of molecules with a larger chemical structure. We expect to see this work lead to the development of molecular wires, new battery materials, thin film crystal growth from precise molecular designs, and the further elucidation of fundamental physical properties."

This research result was posted in the Angewandte Chemie International Edition on the 23rd of October 2018.
-end-
[Source] Origuchi, S. et al., 2018. A Supramolecular Approach to the Preparation of Nanographene Adlayers Using Water-Soluble Molecular Capsules. Angewandte Chemie International Edition. Available at: http://dx.doi.org/10.1002/anie.201809258.

Kumamoto University

Related Molecules Articles:

Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
Hand-knitted molecules
Molecules are usually formed in reaction vessels or laboratory flasks.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Data storage using individual molecules
Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled.
Small molecules come into focus
Many biologically important small molecules, like hormones and amino acids, are too small to be measured by conventional detection methods.
We now know how RNA molecules are organized in cells
With their new finding, Canadian scientists urge revision of decades-old dogma on protein synthesis
A new way to create molecules for drug development
Chemists at The Ohio State University have developed a new and improved way to generate molecules that can enable the design of new types of synthetic drugs.
How ions gather water molecules around them
Charged particles in aqueous solutions are always surrounded by a shell of water molecules.
More Molecules News and Molecules Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.