Paving the way for more efficient hydrogen cars

December 05, 2018

Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation. But for hydrogen cars to become mainstream, scientists need to develop more efficient hydrogen-storage systems. Now, researchers reporting in ACS' Chemistry of Materials have used metal-organic frameworks (MOFs) to set a new record for hydrogen storage capacity under normal operating conditions.

According to the U.S. Department of Energy, in 2017 the U.S. had 34 publicly accessible hydrogen fueling stations, with 31 of these in California. Along with increased fueling infrastructure, technological advances are needed for the widespread adoption of hydrogen cars. In particular, improved hydrogen storage systems could increase the driving range of the automobiles while reducing cost. Current hydrogen cars use expensive, bulky cooling or compression systems to store enough hydrogen for acceptable driving ranges. Jeffrey Long and colleagues wondered if they could use MOFs to store more hydrogen fuel under normal driving conditions. MOFs are compounds that contain metal ions coordinated to organic ligands. The 3D structures of some MOFs form pores that strongly adsorb molecules of hydrogen gas and cause them to attract other molecules, which could allow the gas to condense under near-ambient conditions.

To determine the best MOF for hydrogen storage, the researchers tested four different compounds -- two that contained nickel and two that contained cobalt as the coordinating metal. A MOF called Ni2(m-dobdc) showed the highest hydrogen-storage capacity over a range of pressures and temperatures. At ambient temperature and a much lower tank pressure than used in current hydrogen vehicles, Ni2(m-dobdc) set a new record for hydrogen storage capacity of 11.9 g of fuel per liter of MOF crystal. The MOF had a significantly greater storage capacity than compressed hydrogen gas under the same conditions. When the researchers examined the structure of the MOF by neutron diffraction, they found that a single pore contained seven specific binding sites for hydrogen gas that enabled dense packing of the fuel.
The authors acknowledge funding from the Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact

Follow us on Twitter | Facebook

American Chemical Society

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to