Nav: Home

Mantle neon illuminates Earth's formation

December 05, 2018

The Earth formed relatively quickly from the cloud of dust and gas around the Sun, trapping water and gases in the planet's mantle, according to research published Dec. 5 in the journal Nature. Apart from settling Earth's origins, the work could help in identifying extrasolar systems that could support habitable planets.

Drawing on data from the depths of the Earth to deep space, University of California Davis Professor Sujoy Mukhopadhyay and postdoctoral researcher Curtis Williams used neon isotopes to show how the planet formed.

"We're trying to understand where and how the neon in Earth's mantle was acquired, which tells us how fast the planet formed and in what conditions," Williams said.

Neon is actually a stand-in for where gases such as water, carbon dioxide and nitrogen came from, Williams said. Unlike these compounds that are essential for life, neon is an inert noble gas, and it isn't influenced by chemical and biological processes.

"So neon keeps a memory of where it came from even after four and a half billion years," Mukhopadhyay said.

There are three competing ideas about how the Earth formed from a protoplanetary disk of dust and gas over four billion years ago and how water and other gases were delivered to the growing Earth. In the first, the planet grew relatively quickly over two to five million years and captured gas from the nebula, the swirling cloud of dust and gas surrounding the young Sun. The second theory suggests dust particles formed and were irradiated by the Sun for some time before condensing into miniature objects called planetesimals that were subsequently delivered to the growing planet. In the third option, the Earth formed relatively slowly and gases were delivered by carbonaceous chondrite meteorites that are rich in water, carbon and nitrogen.

These different models have consequences for what the early Earth was like, Mukhopadhyay said. If the Earth formed quickly out of the solar nebula, it would have had a lot of hydrogen gas at or near the surface. But if the Earth formed from carbonaceous chondrites, its hydrogen would have come in the more oxidized form, water.

Neon from ocean floor to deep space

To figure out which of the three competing ideas on planet formation and delivery of gases were correct, Williams and Mukhopadhyay accurately measured the ratios of neon isotopes that were trapped in the Earth's mantle when the planet formed. Neon has three isotopes, neon-20, 21 and 22. All three are stable and non-radioactive, but neon-21 is formed by radioactive decay of uranium. So the amounts of neon-20 and 22 in the Earth have been stable since the planet formed and will remain so forever, but neon-21 slowly accumulates over time. The three scenarios for Earth's formation are predicted to have different ratios of neon-20 to neon-22.

The closest they could get to the mantle was to look at rocks called pillow basalts on the ocean floor. These glassy rocks are the remains of flows from deep in the Earth that spilled out and cooled in the ocean, later to be collected by a drilling expedition led by the University of Rhode Island, which makes its collection available to other scientists.

The gases are found in tiny bubbles within the basalt. Using a press, Williams cracked basalt chips in a sealed chamber, allowing the gases to flow into a sensitive mass spectrometer.

Now for the space part. Previous researchers established the neon isotope ratio for the "solar nebula" (early rapid formation) model with data from the Genesis mission, which captured particles of the solar wind. Data for the "irradiated particles" model came from analyses of lunar soils and of meteorites. Finally, carbonaceous chondrite meteorites provided data for the "late accretion" model.

Minimum size for a habitable planet

The isotope ratios they found were well above those for the "irradiated particles" or "late accretion" models, Williams said, and support rapid early formation.

"This is a clear indication that there is nebular neon in the deep mantle," Williams said.

Neon, remember, is a marker for those other volatile compounds. Hydrogen, water, carbon dioxide and nitrogen would have been condensing into the Earth at the same time -- all ingredients that, as far as we know, go into making up a habitable planet.

The results imply that to absorb these vital compounds, a planet must reach a certain size -- the size of Mars or a little larger -- before the solar nebula dissipates. Observations of other solar systems show that this takes about two to three million years, Williams said.

Does the same process happen around other stars? Observations from the Atacama Large Millimeter Array, or ALMA, observatory in Chile suggest that it does, the researchers said.

ALMA uses an array of 66 radiotelescopes working as a single instrument to image dust and gas in the universe. It can see the planet-forming disks of dust and gas around some nearby stars. In some cases, there are dark bands in those disks where dust has been depleted.

"There are a couple of ways dust could be depleted from the disk, and one of them is that they are forming planets," Williams said.

"We can observe planet formation in a gas disk in other solar systems, and there is a similar record of our own solar system preserved in Earth's interior," Mukhopadhyay said. "This might be a common way for planets to form elsewhere."
-end-
The work was funded by the National Science Foundation.

University of California - Davis

Related Nebula Articles:

Radio astronomers peer deep into the stellar nursery of the Orion Nebula
Astronomers have released an image of a 50-light-year-long filament of star-forming gas, 1200 light-years away, in the stellar nursery of the Orion Nebula.
ALMA returns to Boomerang Nebula
An ancient, red giant star has produced the coldest known object in the cosmos.
Observatories combine to crack open the Crab Nebula
Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum.
Image release: Telescopes team up for dramatic new look at the crab nebula
Multiwavelength image with VLA, Spitzer, Hubble, XMM-Newton, and Chandra observatories shows the 'whole picture' of the famous Crab Nebula supernova remnant, and provides astronomers with new insights into the object's complex physics.
New Hubble mosaic of the Orion Nebula
In the search for rogue planets and failed stars astronomers using the NASA/ESA Hubble Space Telescope have created a new mosaic image of the Orion Nebula.
Vast luminous nebula poses a cosmic mystery
Astronomers have found an enormous, glowing blob of gas in the distant universe, with no obvious source of power for the light it is emitting.
Scientists estimate solar nebula's lifetime
A collaborative study involving Brookhaven, MIT, the Harvard-Smithsonian Center for Astrophysics, and the National Museum in Rio de Janeiro suggests the gas cloud from which our solar system formed lasted about 4 million years.
Scientists estimate solar nebula's lifetime
MIT scientists have a new estimate for the lifetime of the solar nebula, the gaseous precursor of the solar system: Measurements from ancient meteorites suggest the solar nebula disappeared within 4 million years.
Hubble captures brilliant star death in 'rotten egg' nebula
The Calabash Nebula, pictured here -- which has the technical name OH 231.8+04.2 -- is a spectacular example of the death of a low-mass star like the sun.
A dead star's ghostly glow
The eerie glow of a dead star, which exploded long ago as a supernova, reveals itself in this NASA Hubble Space Telescope image of the Crab Nebula.

Related Nebula Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.