First observation of a square lattice of merons and antimerons

December 05, 2018

Scientists have, for the first time, observed a square lattice of merons and antimerons--tiny magnetic vortices and antivortices that form in a thin plate of the helical magnet Co8Zn9Mn3. By finely varying a magnetic field applied perpendicularly to the thin plate, the researchers were able to induce a transformation between the square lattice of merons-antimerons and a hexagonal lattice of skyrmions, another form of vortex that is topologically different from merons and antimerons.

The ability to manipulate nanometer-scale spin textures such as merons and skyrmions is a key to the development of spintronics--next-generation electronic devices that are very low in power consumption. The secret to their low power consumption is that they make use of the topological spin texture -- a property that emerges when electrons interact in a solid.

To perform the experiments, published in Nature, the group used a thin magnetic sample made of an alloy of cobalt, zinc, and manganese, Co8Zn9Mn3, which is known as a chiral magnet. They used an extremely weak magnetic field to coax the tiny vortices to form in the thin sample, and observed them with Lorentz electron microscopy. "It is well known in nature," says Xiuzhen Yu of the RIKEN Center for Emergent Matter Science (CEMS), the first author of the paper, "that external stimuli can trigger a structural transition of crystals between tetragonal and hexagonal lattices, and it had been predicted that this would be seen in topological spin-textures as well. It was very satisfying to be able to show that this idea was indeed true, when we witnessed the merons transformed into skyrmions as we carefully increased the magnetic field."

The experiments did, however, give the researchers some surprises. Using the thin plate sample, they experimented with lowering the temperature to see how it would affect the textures. According to Yu, "We found that the skyrmions were very robust, lasting even as we lowered the temperature of the thin plate, but the merons and antimerons were much more sensitive, and relaxed into spin helices as the temperature fell. This could have implications for the manipulation of these textures in future spintronic devices. In the future, we plan to do studies using not only magnetic anisotropy, but also local strain to control spin textures."
-end-
The work was done by researchers from RIKEN CEMS along with the University of Tokyo.

RIKEN

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.