Nav: Home

Small molecules come into focus

December 05, 2018

As medical science has come to understand that the human body is controlled on the molecular level by various proteins, hormones, drugs, and other substances, technologies have developed to detect levels of these molecules in order to monitor health and diagnose disease. However, many of these molecules are so small that they cannot be detected by the most widely available analysis techniques, leaving questions about crucial substances like amino acids, sugars, and lipids largely unanswered.

Now, scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Brigham and Women's Hospital (BWH) have created a new type of immuno-assay that is capable of detecting small molecules with 50-fold greater sensitivity than conventional detection methods, and can be easily integrated into existing diagnostic platforms. The research is described in the Journal of the American Chemical Society.

"The enhanced analytical sensitivity of our assay enables measurements of small molecules at extremely low concentrations, and opens a window into biological phenomena that were previously unreachable," said senior author David Walt, Ph.D., a Core Faculty member of the Wyss Institute who is also the Hansjörg Wyss Professor of Biologically Inspired Engineering at Harvard Medical School (HMS) and Professor of Pathology at BWH, as well as an HHMI Professor.

The new approach is based on a type of analysis called a competitive immunoassay, in which a known quantity of a labeled molecule of interest and a sample with an unknown quantity of the molecule are both added to an array of antibodies to which they bind. The labeled and unlabeled molecules then "compete" for the same antibody binding sites. By analyzing the amount of the labeled molecule of interest that is bound to the antibodies compared to the total number of available antibody sites, it is possible to conclude that the remaining sites are bound by the unlabeled molecule from the sample, allowing the concentration of that molecule to be determined.

The researchers created two types of competitive immunoassays that used slightly different methods to capture small molecules of interest, based on the Simoa system from Quanterix™. The first method uses magnetic microbeads coated with the target molecule as the competitor, while the second method attaches the target molecule to the enzyme beta-galactosidase, which then binds to the magnetic beads to form the competitor complex. After the bead/antibody mixtures are allowed to mix with a sample containing an unknown amount of the target molecule, the beads are rinsed to remove any unbound molecules and then added to a Simoa disc containing thousands of microwells, each of which can hold one bead bound to one target molecule. A reaction then takes place that makes any well containing a bead with the labeled target molecule fluoresce. The fewer number of fluorescent wells, the fewer labeled target molecules are bound to the beads, and thus the greater the concentration of the unlabeled target molecule present in the sample.

Two small molecules that are important for normal human body function were analyzed: cortisol and PGE2. Cortisol is widely used to evaluate the function of the adrenal, pituitary, and hypothalamus glands, while PGE2 is a hormone-like prostaglandin molecule that influences inflammation, fertility, and immune function. The new competitive methods were able to detect their targets with up to 50 times greater sensitivity than a conventional ELISA (enzyme-linked immunosorbent assay), within about an hour.

"Our plan is to use this method in diagnostics for improved detection of hormones in blood samples," said first author Xu Wang, Ph.D., a Postdoctoral Research Fellow at BWH and the Wyss Institute. "We are working to try to commercialize this technology for the rapid detection of small molecules for a variety of clinical and environmental applications."

"The Walt team continues to push the envelope in the field of diagnostics with this advance. By sensing molecules previously undetectable within an hour, they open entirely new approaches to diagnostics and clinical monitoring that should greatly improve human health. It's precisely the type of translational innovation we hope to enable and empower at the Wyss Institute," said the Wyss Institute's Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Children's Hospital, as well as Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences (SEAS).
-end-
Additional authors of the paper include Limor Cohen, a graduate student at the Wyss Institute and BWH, and Jun Wang, Ph.D., a professor at Nanjing Tech University, China.

This research was supported by the Wyss Institute for Biologically Inspired Engineering at Harvard University.

Wyss Institute for Biologically Inspired Engineering at Harvard

Related Amino Acids Articles:

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
Differentiating amino acids
Researchers develop the foundation for direct sequencing of individual proteins.
Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.