Your food may help make stickier, safer glues for laptops, packaging, furniture

December 05, 2019

WEST LAFAYETTE, Ind. - You cannot make glue out of a ham sandwich - but you may be able to use the components of that food to create a strong adhesive.

That's the thinking behind technology developed by a group of scientists at Purdue University, who have taken inspiration from the kitchen and the ocean to create strong glues. The team's work is published in the Oct. 8 edition of Advanced Sustainable Systems.

"Adhesives are used in almost every consumer product that we touch each day," said Gudrun Schmidt, an associate professor of practice in Purdue's College of Science, who helped lead the research team. "We would love to leave this planet a better place for the future generations. It turns out creating new adhesives is one way that we will get there."

Schmidt said almost all of the glues used in electronics and other consumer products are petroleum-derived, permanent and often toxic. The Purdue team chose compounds in foods, like nuts, fruits and plants, all of which might have similar chemistry to the adhesives seen in shellfish that stick to rocks.

The team included Jonathan Wilker, a Purdue professor of chemistry and materials engineering, who studies mussels and oysters to create adhesives based on how those shellfish stick to rocks.

"We have created high-performance, tunable adhesives that are nontoxic and degradable," Schmidt said. "We found that some combinations of zein protein and tannic acid could be reacted together in order to generate high-performance adhesives that could be alternatives to carcinogenic formaldehyde used in the glues that hold lots of furniture and other household items together. It would be a big health benefit if we could switch over to bio-based or even food-based adhesives."

Schmidt said other potential applications for the adhesives include cardboard packaging, cosmetics and construction materials like plywood.
-end-
The researchers have worked on patenting their technologies with the Purdue Research Foundation Office of Technology Commercialization. Ongoing efforts include potential development of a startup company based upon these new adhesives. For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at otcip@prf.org and reference track code 2017-WILK-67873.

About Purdue Research Foundation Office of Technology Commercialization

The Purdue Research Foundation Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities through commercializing, licensing and protecting Purdue intellectual property. The office is managed by the Purdue Research Foundation, which received the 2019 Innovation and Economic Prosperity Universities Award for Place from the Association of Public and Land-grant Universities. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University. Visit the Office of Technology Commercialization for more information.

Writer: Chris Adam, 765-588-3341, cladam@prf.org

Sources: Gudrun Schmidtt, gudrun@purdue.edu

Jonathan Wilker, wilker@purdue.edu

Purdue University

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.