No Such Luck: Nitrogen From Air Pollution Unlikely to Moderate Global Warming

December 05, 1996

Modern society pollutes the air not only with carbon dioxide, but also with large amounts of nitrogen-containing compounds released by the burning of fossil fuels and the use of fertilizers. Scientists had hoped that this extra nitrogen would spur the growth of plants and that the plants, in turn, would absorb some of the extra carbon dioxide in the atmosphere to moderate global warming.

That scenario now seems unlikely, say scientists at the University of Toronto and the University of Minnesota. In the December 6th issue of the journal Science, Toronto's David Wedin and Minnesota's David Tilman report little reason for optimism about this problem. In studying the effects of experimentally added nitrogen on prairie grasslands, they found that while low rates of nitrogen deposition encouraged plant growth and high carbon storage in fields dominated by native "warm-season" prairie grasses, the results were very different in fields dominated by non-native "cool-season" grasses. These fields lost most of the added nitrogen and showed no net storage of carbon. Further, at medium and high rates of nitrogen addition, the native prairie species went extinct, the diversity of vegetation dropped sharply, and the ability of the prairie grasslands to store carbon disappeared.

"From a global change perspective, this is the first long-term field experiment to demonstrate the tight linkages between nitrogen deposition, carbon dynamics, and plant species composition in grasslands," says Scott Collins, director of the National Science Foundation's Long-Term Ecological Research Program, which funded the research.

The two researchers spent 12 years studying the effects of experimentally added nitrogen in 162 plots in three Minnesota grasslands. "We added nitrogen at rates equivalent to what's deposited from the atmosphere in Minnesota and the Ohio Valley, right up through the amounts of highly agricultural and industrial areas of Europe," said Tilman. "Two of our nine treatments went beyond these rates to try to predict the longer-term effects of nitrogen deposition."

Tilman and Wedin found that more than half of the plant species were lost across the nitrogen addition gradient, with the greatest losses occurring at low levels of nitrogen addition -- the 1 to 5 gram range, which is comparable to current atmospheric deposition rates in eastern North America and northern Europe. Most of the lost nitrogen leaked into groundwater as nitrate, a pollutant and human health threat throughout the Midwest.

The nitrogen-driven loss of diversity and rise of "weedy" species in grasslands are comparable to the well-documented changes that occur in some lakes when phosphorus is added, the researchers said. In lakes lacking phosphorus, the addition of this nutrient -- often a result of human activities -- causes "eutrophication," a process that leads to increased growth of algae and other undesirable outcomes.

Tilman and Wedin conclude that in grassland ecosystems, nitrogen loading is a major threat that leads to loss of diversity, greater abundance of non-native species and the disruption of ecosystem functioning -- responses that are tightly linked. "We cannot preserve prairies or maintain the functioning of these and other ecosystems if we continue to pollute them with high rates of atmospheric nitrogen deposition," said Tilman. "Nitrogen pollution is a problem that will grow progressively worse as the human population rises unless we take direct steps to counter it."

National Science Foundation

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to