Study puts a damper on extent of new brain cell growth

December 06, 2001

Neuroscientists have not found any evidence that adult primates are able to create new neurons in the most sophisticated part of the brain, the neocortex, according to the results of a study published in the Dec. 7 issue of the journal Science. The results from scientists at Yale University and the University of Rochester run counter to a widely publicized report two years ago when other researchers reported the first discovery of neurogenesis - formation of new neurons - in the neocortex of adult monkeys.

The new findings, in a study funded by the National Institutes of Health, come from David Kornack, assistant professor of neurobiology and anatomy at the University of Rochester, and his former adviser, neuroscience pioneer Pasko Rakic of Yale.

"As a neuroscientist, oftentimes the first question I'm asked when I meet someone is, 'How can I get more brain cells?' I'm as interested in the question as everyone else," says Kornack. "It's now apparent that although some parts of the primate brain do acquire new neurons in adulthood, the neocortex is not among these regions."

For decades, scientists believed that adult humans and other primates such as monkeys are born pretty much with all the nerve cells, or neurons, in the brain that they'll ever have. However, in the last few years, several scientists equipped with new imaging techniques have reported growth of new neurons in adult primates like monkeys and humans in certain older parts of the brain, such as the hippocampus, which is key to memory, and the olfactory bulb, which is important for smell.

Two years ago, the idea took a giant step forward when researchers reported new neurons growing in the neocortex of adult monkeys. The neocortex - the wrinkled, outer layer of the brain - is the most evolved part of the brain, controlling our most sophisticated behaviors such as language and planning. The birth of new neurons in that part of the brain could have vast implications for human health and for understanding how the neocortex performs its sophisticated duties.

However, in the study published this week in Science, Rakic and Kornack used the most sophisticated cell analysis techniques available and found no new neurons in the neocortex of adult monkeys, despite painstaking analysis of thousands of new cells in the neocortex.

The team used two separate molecular markers to key in on candidates for new neurons, then used laser-based confocal microscopy to look closely at every candidate. They found that oftentimes a cell seemed to carry both signals, flagging it as a newly created neuron, but that when the team looked closely, the "new neuron" turned out to be two separate cells, usually one "old" neuron and one newly created cell of a different type, such as a glial cell.

The pair did find new neurons in the hippocampus and the olfactory bulb. And they did find new cells of other types, such as glial cells, in the neocortex. But the pair, who comprised one of the first teams of scientists to discover that new neurons can be made in the hippocampus of adult primates, did not detect a single new neuron in the neocortex, an idea which caused much excitement among neuroscientists two years ago.

One upshot of the new findings, Kornack says, is that scientists should look to mechanisms besides neurogenesis to understand the workings of the neocortex, such as how we learn and store memories over a lifetime. The work could also affect the development of therapies that use adult stem cells to replace neurons lost to brain injury or neurodegenerative diseases like Parkinson's or Alzheimer's.

"If we can find out what allows stem cells in those few restricted brain regions to continue producing neurons into adulthood, perhaps we can mimic that magic in other areas of the brain - such as the neocortex - that can suffer neuronal loss but don't normally make neurons," says Kornack, who left Yale to join the University of Rochester faculty last year. He is part of the University's Center for Aging and Developmental Biology.

University of Rochester Medical Center

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to