Innovative take-off system could lead to safer, cleaner air travel

December 06, 2004

A new approach to aircraft scheduling that uses computer models could allow a safe increase in airport throughput and reduce pollution.

The system under development would, for the first time, provide runway controllers with advice, based on state-of-the-art computer models, on the most efficient, safe sequence in which aircraft can take-off. Currently, runway controllers carry out their demanding job using their own observations and mental calculations, with limited reliance on technical aids.

The system is being designed to take factors such as aircraft size, speed and route into account. Large aircraft create more turbulence, for example, and so the aim is to group aircraft together by weight category. The system would also cover aircraft taxi-ing to the airport holding point, as well as those already waiting there. Responding quickly to changing circumstances, it would provide runway controllers with instant advice.

By minimising the amount of time aircraft spend on the ground with engines running, the system would also reduce noise and fuel pollution affecting people living close to airports, and could save thousands of litres of aviation fuel.

The research could lead to a computer-based system that helps runway controllers make quick but effective scheduling decisions, generating a 10-25% reduction in delays affecting aircraft waiting for clearance to take-off.

The work is being carried out by computer scientists at the University of Nottingham with funding from the Engineering and Physical Sciences Research Council (EPSRC) and National Air Traffic Services Ltd (NATS).

The research project is being run in conjunction with Heathrow Airport Air Traffic Control and will be designed to deal with 'real world' constraints (e.g. runway controller workloads and holding point structure).

Professor Edmund Burke of the University's School of Computer Science and Information Technology says: "Reducing airport bottlenecks is good for passengers, airlines, the environment and people living close to airports. Our aim is to cut runway controllers' workloads while increasing safety as demand for air travel grows."
-end-
Notes for Editors

The 3-year project is being funded by EPSRC and NATS as an industrial CASE (Co-operative Awards in Science and Engineering) initiative through the Smith Institute for Industrial Mathematics and System Engineering. CASE awards are 3-year postgraduate awards enabling companies and other organisations to take a lead in defining and arranging projects with an academic partner of their choice. Jason Atkin is the PhD student at Nottingham University who is playing a key role in the aircraft take-off system project.

National Air Traffic Services Ltd (NATS) provides air traffic control services to aircraft flying in UK airspace and over the eastern part of the North Atlantic. This year NATS will handle more than two million flights carrying over 180 million passengers. Website address for more information on NATS: www.nats.co.uk

The Engineering and Physical Sciences Research Council (EPSRC) is the UK's main agency for funding research in engineering and the physical sciences. The EPSRC invests more than £500 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. Website address for more information on EPSRC: www.epsrc.ac.uk/

For more information, contact:

Professor Edmund Burke, Automated Scheduling, Optimisation and Planning Research Group, School of Computer Science and Information Technology, University of Nottingham, tel: 0115-951-4206, e-mail: ekb@cs.nott.ac.uk, and the PhD student working on the project, Jason Atkin (tel: 0115-951-4234, e-mail: jaa@cs.nott.ac.uk).

An image is available from the EPSRC press office, contact: Natasha Richardson, tel: 44-179-344-4404, e-mail: Natasha.richardson@epsrc.ac.uk.

Picture Info: 'Aircraft take-off. Jpg' (100 KB) The photo shows aircraft queuing at Heathrow Airport. Suggested caption: "New research could minimise the time aircraft spend waiting for take-off". Photo to be credited: "courtesy of National Air Traffic Services Ltd"

Engineering and Physical Sciences Research Council

Related Aircraft Articles from Brightsurf:

University of South Carolina redefining aircraft production process
The University of South Carolina College of Engineering and Computing will transform the manufacturing and simulation processes used in aircraft production through a $5.7 million NASA grant.

Small altitude changes could cut climate impact of aircraft by up to 59%
Altering the altitudes of less than 2% of flights could reduce contrail-linked climate change by 59%, says a new Imperial study.

Small altitude changes could cut the climate impact of aircraft
Contrails -- the white, fluffy streaks in the sky that form behind planes -- can harm the environment.

New electrodes could increase efficiency of electric vehicles and aircraft
The rise in popularity of electric vehicles and aircraft presents the possibility of moving away from fossil fuels toward a more sustainable future.

Composite metal foam outperforms aluminum for use in aircraft wings
The leading edges of aircraft wings have to meet a very demanding set of characteristics.

Particulate matter from aircraft engines affects airways
In a unique, innovative experiment, researchers under the leadership of the University of Bern have investigated the effect of exhaust particles from aircraft turbine engines on human lung cells.

How to ice-proof the next generation of aircraft
To prevent ice formation on aircraft during flight, current systems utilize the heat generated by burning fuel, but these high-temperature, fuel-dependent systems cannot be used on the proposed all-electric, temperature-sensitive materials of next-generation aircraft.

Putting hybrid-electric aircraft performance to the test
Although hybrid-electric cars are becoming commonplace, similar technology applied to airplanes comes with significantly different challenges.

Aircraft microbiome much like that of homes and offices, study finds
What does flying in a commercial airliner have in common with working at the office or relaxing at home?

Sequential model chips away at mysteries of aircraft
Ice accumulation on aircraft wings is a common contributing factor to airplane accidents.

Read More: Aircraft News and Aircraft Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.