Purdue method to help engineers design systems for Mars, moon missions

December 06, 2004

WEST LAFAYETTE, Ind. - Purdue University researchers, in the culmination of a four-year NASA-funded project, have created a method that will enable engineers to design more efficient systems for heating, cooling and other applications in spacecraft for missions to Mars and the moon.

The new method uses a model that was recently shown to be highly accurate in experiments onboard a NASA KC-135 aircraft that creates reduced gravity conditions such as those in earth orbit, on the moon and Mars. The aircraft flies in steep maneuvers, causing brief periods of microgravity in which to test theories for the design of space hardware, said Issam Mudawar, a Purdue professor of mechanical engineering, director of Purdue's Boiling and Two-Phase Flow Laboratory and the university's International Electronic Cooling Alliance.

"Our model can predict how these systems behave in reduced gravity based on operating conditions, how much fluid is flowing in a tube, how fast it is flowing, what the tube diameter and tube length are, and so on," Mudawar said. "What's neat about the flight experiments is that not only did we get data about the microgravity of space travel, but we also simulated the reduced gravity of the moon and Mars."

Lunar gravity is one-sixth that of Earth's, and Martian gravity is three-eighths as strong.

Using the same principle behind ordinary air conditioners and refrigerators, scientists want to use so-called "two-phase systems" for future spacecraft and space stations on the moon and Mars. The systems will work by using a closed loop in which liquid comes to a boil as it absorbs heat, turns into a vapor and is then returned by pumps so that it condenses back into a liquid and, in the process, cools down to begin the cycle over again.

"Boiling the liquid makes these systems at least 10 times more effective at transferring heat than systems that merely heat liquid, like the cooling system in your car, in which water absorbs heat from the engine and then circulates through a radiator to release the heat," Mudawar said. "The problem is that little has been known about the behavior of boiling and condensing liquids in space.

"Our work with NASA has led to a fundamental understanding of this two-phase fluid behavior in the microgravity of space and a method to provide guidelines for the design of space hardware."

Findings were presented in Cleveland in June during the Workshop on Strategic Research to Enable NASA's Exploration Missions. The study was conducted by Mudawar; Hui Zhang, a Purdue doctoral student in mechanical engineering; and Mohammad M. Hasan, a research engineer at the NASA Glenn Research Center in Cleveland.

The Purdue researchers first created a model in experiments on earth that simulated low gravity. Then, flight experiments on the NASA aircraft proved the model to be highly accurate, Mudawar said.

Engineers designed the flight experiment so that fluid flowed through a transparent plastic window. The researchers then took high-speed photographs and video of the flowing fluid during the flights, enabling the engineers to study its behavior in minute detail.

Zhang operated the experiment on the NASA KC-135 aircraft.

Data recorded during the experiments show how a given system would function in space, on the moon and on Mars.

Because boiling, vaporizing and condensing a fluid is far more effective at dissipating heat than just using liquid, such systems can be significantly more compact and lightweight, which is ideal for space travel.

"Weight is at a premium for any space mission, and this model will help engineers create smaller and lighter systems," NASA researcher Hasan said.

The transfer of heat is critical for cooling and heating systems, as well as the operation of power plants that use nuclear fission reactions. NASA researchers are exploring the possible use of nuclear fission reactors - the type of nuclear power used on earth - for future space applications.

President George W. Bush has launched an initiative establishing human missions to the moon and Mars as priorities, which means better life-support and power-generation systems will be needed.

The next step in the Purdue research will be testing the model with various fluids to broaden the tool's range of applications.
Note to Journalists: An electronic copy of the NASA presentation about the Purdue research is available from Emil Venere, 765-494-4709, venere@purdue.edu. A publication-quality photograph of researchers with the flight experiment in their Purdue lab also is available at http://news.uns.purdue.edu/UNS/html4ever/2004/041206.Mudawar.twophase.html

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Issam Mudawar, 765-494-5705, mudawar@ecn.purdue.edu
Hui Zhang, zhang99@purdue.edu
Mohammad M. Hasan, Mohammad.M.Hasan@grc.nasa.gov

Related Web site:
Issam Mudawar: http://tools.ecn.purdue.edu/ME/Fac_Staff/mudawar.whtml
Purdue University Home Page: http://www.purdue.edu
STORY AND PHOTO CAN BE FOUND AT: http://news.uns.purdue.edu/UNS/html4ever/2004/041206.Mudawar.twophase.html
A publication-quality photo is available at http://news.uns.purdue.edu/images/+2004/mudawar-NASA.jpg

Photo caption: Hui Zhang, left, a Purdue mechanical engineering doctoral student, and Issam Mudawar, a Purdue professor of mechanical engineering, work on a flight apparatus used to conduct experiments on a NASA aircraft that creates reduced gravity conditions such as those in earth orbit, on the moon and Mars. The apparatus has a back-lighted window that enables engineers to take high-speed pictures and video of fluid flowing through tubing during reduced gravity. Data from the experiments enabled the researchers to verify the accuracy of a model that engineers can use to design more efficient spacecraft systems for everything from heating and air conditioning to nuclear power. The future space systems, using the same principle behind ordinary air conditioners and refrigerators, will have a closed loop in which liquid comes to a boil as it absorbs heat, turns into a vapor and is then returned by pumps so that it condenses back into a liquid, and in the process cools down to begin the cycle over again. Designing the systems will require a better understanding of the behavior of boiling and condensing liquids in space. The Purdue model was developed during a four-year NASA-funded project led by Mudawar.

Purdue University

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.