Getting ready for the 'big one,' researchers make most detailed survey ever of San Adreas Fault

December 06, 2005

COLUMBUS, Ohio - Researchers have completed the most meticulous survey ever made of the San Andreas Fault, and they've found detailed features that nobody could have seen before.

Michael Bevis, Ohio Eminent Scholar in geodynamics and professor of civil and environmental engineering and geodetic science at Ohio State University, unveiled the first images from the ambitious new survey Wednesday at the American Geophysical Union meeting in San Francisco.

His team will spend the next year processing the rest of the survey data, which they gathered using ultra-high-resolution global positioning system (GPS) technology and a radar-like system called lidar.

Short for "light detection and ranging," lidar measures the time it takes for light to reflect off the surface of an object. The combined GPS and lidar technologies enabled the researchers to map the surface of the San Andreas Fault with 5-centimeter (1.97 inches) vertical resolution.

The researchers dubbed their survey the "B4" Project, because the data will form the "before" images that scientists will compare to "after" images of the next big San Andreas earthquake when it inevitably happens.

Scientists know more or less what happens away from a fault line during an earthquake, Bevis said. But what happens near or in the fault, or how an earthquake starts - these things are not well known, and are frequently debated among scientists.

"By having this high resolution image of before and after a quake, we should be able to resolve some of these debates," Bevis said.

They loaded their equipment on board a twin-engine Cessna airplane, and covered nearly 1,000 kilometers (621.37 miles) of the fault in two months of flights, during May and August of 2005.

Bevis recalled that the flights required near-heroic effort from the team pilots. "We had to fly low and closely manage the orientation of the aircraft at all times so we knew exactly where the laser on the lidar instrument was pointing," he said.

A less-controlled airborne photographic survey would have been easier, but also much more time consuming. "To do this kind of survey the traditional way would take years - just to process the photographs. We'll have preliminary results in a month, and refined results in six months," Bevis said.

The San Andreas fault splits in the south, with one of the two offshoots becoming the San Jacinto Fault. The B4 Survey covered both, tracing the main fault lines and countless smaller lines branching from them.

Looking at one of the images, Bevis easily picked out the SUV belonging to team members who drove along the fault ahead of the plane. Even the tripod holding one of their portable GPS stations was visible. He identified other dots on the image as cows and small trees.

How could he tell which ones were cows? "When we looked back later, some of them had moved," he said.

The team will post its maps on the Web. "As we do each day's processing, we'll make it available to the whole scientific community," Bevis said. "People are going to find all kinds of faults and other features that they never knew about before.

"Often a fault line is fairly subtle," he continued. "There are some spots where, if you were actually standing on the ground, and you weren't a geologist who knows the area really well, you probably couldn't even see it. But in these images you can."

Scientists anticipate that a "Big One" - an earthquake of magnitude 8 or more on the Richter scale - will eventually strike California via the San Andreas. The 1906 San Francisco Earthquake was blamed on the fault, and scientists believe it would have registered near magnitude 8, had the scale existed then. But when another Big One will strike is an open question.

As detailed as the new survey is, Bevis said it can't be used to predict the future.

"The point of the B4 Project is to learn more about earthquakes in general," he said. "People think we may one day find a way to predict earthquakes, but I think it may be impossible. Not all processes are predictable."
-end-
Team members hailed from Ohio State; the United States Geological Survey; the University of California, Los Angeles; the University of California, San Diego; Caltech; the University of Florida; and UNAVCO, a nonprofit consortium of research institutions. The work was funded by the National Science Foundation and NASA.

Contact: Michael Bevis, (614) 247-5071; Bevis.6@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Ohio State University

Related Earthquake Articles from Brightsurf:

Healthcare's earthquake: Lessons from COVID-19
Leaders and clinician researchers from Beth Israel Lahey Health propose using complexity science to identify strategies that healthcare organizations can use to respond better to the ongoing pandemic and to anticipate future challenges to healthcare delivery.

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.

Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.

Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.

Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.

Read More: Earthquake News and Earthquake Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.