NASA research reveals climate warming reduces ocean food supply

December 06, 2006

In a NASA study, scientists have concluded that when Earth's climate warms, there is a reduction in the ocean's primary food supply. This poses a potential threat to fisheries and ecosystems.

By comparing nearly a decade of global ocean satellite data with several records of Earth's changing climate, scientists found that whenever climate temperatures warmed, marine plant life in the form of microscopic phytoplankton declined. Whenever climate temperatures cooled, marine plant life became more vigorous or productive. The findings will appear in the journal Nature on Dec. 7.

The results provide a preview of what could happen to ocean biology in the future if Earth's climate warms as the result of increasing levels of greenhouse gases in the atmosphere.

"The evidence is pretty clear that the Earth's climate is changing dramatically, and in this NASA research we see a specific consequence of that change," said oceanographer and study co-author Gene Carl Feldman of NASA's Goddard Space Flight Center, Greenbelt. Md. "It is only by understanding how climate and life on Earth are linked that we can realistically hope to predict how the Earth will be able to support life in the future."

Phytoplankton are microscopic plants living in the upper sunlit layer of the ocean. They are responsible for approximately the same amount of photosynthesis each year as all land plants combined. Changes in phytoplankton growth and photosynthesis influence fishery yields, marine bird populations and the amount of carbon dioxide the oceans remove from the atmosphere.

"Rising levels of carbon dioxide in the atmosphere play a big part in global warming," said lead author Michael Behrenfeld of Oregon State University, Corvallis. "This study shows that as the climate warms, phytoplankton growth rates go down and along with them the amount of carbon dioxide these ocean plants consume. That allows carbon dioxide to accumulate more rapidly in the atmosphere, which would produce more warming."

The findings are from a NASA-funded analysis of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument on the OrbView-2 spacecraft, launched in 1997. SeaWiFS is jointly operated by GeoEYE, Dulles, Va. and NASA.

The uninterrupted nine-year record shows in great detail the ups and downs of marine biological activity or productivity from month to month and year to year. Captured at the start of this data record was a major, rapid rebound in ocean biological activity after a major El Niño event. El Niño and La Niña are major warming or cooling events, respectively, that occur approximately every 3-7 years in the eastern Pacific Ocean and are known to change weather patterns around the world.

Scientists made their discovery by comparing the SeaWiFS record of the rise and fall of global ocean plant life to different measures of recent global climate change. The climate records included several factors that directly effect ocean conditions, such as changes in sea surface temperature and surface winds. The results support computer model predictions of what could happen to the world's oceans as the result of prolonged future climate warming.

"When we compared changes in phytoplankton activity with simultaneous changes in climate conditions, the agreement between the two records was simply astonishing," Behrenfeld said.

Ocean plant growth increased from 1997 to 1999 as the climate cooled during one of the strongest El Niño to La Niña transitions on record. Since 1999, the climate has been in a period of warming that has seen the health of ocean plants diminish.

The new study also explains why a change in climate produces this effect on ocean plant life. When the climate warms, the temperature of the upper ocean also increases, making it "lighter" than the denser cold water beneath it. This results in a layering or "stratification" of ocean waters that creates an effective barrier between the surface layer and the nutrients below, cutting off phytoplankton's food supply. The scientists confirmed this effect by comparing records of ocean surface water density with the SeaWiFS biological data.
-end-
For information about NASA and agency programs on the Internet, visit:
http://www.nasa.gov

NASA/Goddard Space Flight Center

Related Phytoplankton Articles from Brightsurf:

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

Synthesis study demonstrates phytoplankton can bloom below Arctic sea ice
Researchers used historical scientific studies, along with contemporary observations employing autonomous floats and robotic vehicles, to demonstrate that phytoplankton blooms occur under Arctic Ocean sea ice.

Ninety years of data shows global warming impacts on foundation of marine ecosystems
Phytoplankton are microscopic plants that underpin ocean productivity and provide 50% of the world's oxygen via photosynthesis.

Ocean warming and acidification effects on calcareous phytoplankton communities
A new study led by researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) warns that the negative effects of rapid ocean warming on planktonic communities will be exacerbated by ocean acidification.

Smaller than expected phytoplankton may mean less carbon sequestered at sea bottom
A study that included the first-ever winter sampling of phytoplankton in the North Atlantic revealed cells smaller than what scientists expected, meaning carbon sequestration models may be too optimistic.

Observing phytoplankton via satellite
Thanks to a new algorithm, researchers at the AWI can now use satellite data to determine in which parts of the ocean certain types of phytoplankton are dominant.

UCI oceanographers predict increase in phytoplankton by 2100
A neural network-driven Earth system model has led University of California, Irvine oceanographers to a surprising conclusion: phytoplankton populations will grow in low-latitude waters by the end of the 21st century.

Study offers solution to Ice Age ocean chemistry puzzle
New research into the chemistry of the oceans during ice ages is helping to solve a puzzle that has engaged scientists for more than two decades.

Kīlauea lava fuels phytoplankton bloom off Hawai'i Island
When Kīlauea Volcano erupted in 2018, it injected millions of cubic feet of molten lava into the nutrient-poor waters off the Big Island of Hawai'i.

Scientists who raced to study Kilauea's lava as it fueled rare phytoplankton bloom find surprise
Results from a rapid-response oceanographic expedition in the North Pacific reveal a surprise about how lava from the Kilauea Volcano, which erupted on the island of Hawai'i during the summer of 2018, triggered a vast phytoplankton bloom.

Read More: Phytoplankton News and Phytoplankton Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.