Long the fixation of physicists worldwide, a tiny particle is found

December 06, 2006

BUFFALO, N.Y. -- After decades of intensive effort by both experimental and theoretical physicists worldwide, a tiny particle with no charge, a very low mass and a lifetime much shorter than a nanosecond, dubbed the "axion," has now been detected by the University at Buffalo physicist who first suggested its existence in a little-read paper as early as 1974.

The finding caps nearly three decades of research both by Piyare Jain, Ph.D., UB professor emeritus in the Department of Physics and lead investigator on the research, who works independently -- an anomaly in the field -- and by large groups of well-funded physicists who have, for three decades, unsuccessfully sought the recreation and detection of axions in the laboratory, using high-energy particle accelerators.

The paper, available online in the British Journal of Physics G: Nuclear and Particle Physics at http://www.iop.org/EJ/abstract/0954-3899/34/1/009, will be published in the January 2007 issue.

Results first were presented during a two-day symposium held in October at UB that celebrated Jain's 50-year career in the physics department in the College of Arts and Sciences.

During that symposium, the world-renowned and Nobel Prize-winning scientists in attendance expressed astonishment and delight that the axion finally might have been found.

The axion has been seen as critical to the Standard Model of Physics and is believed to be a component of much of the dark matter in the universe.

"These results show that we have detected axions, part of a family of particles that likely also includes the very heavy Higgs-Boson particle, which at present is being sought after at different laboratories," said Jain.

The story of the search for the axion particle in high-energy physics -- not to be confused with the search by cosmologists and astrophysicists for axions produced by the sun -- reads almost like a novel,

with veritable armies of physicists committing many years of research and passion to its discovery starting in the 1970s.

In 1977, theoretical physicists predicted that there should exist a particle with characteristics very similar to those described in Jain's papers; in that publication, the term "axion" was coined. After that theoretical work, there was a mushrooming of papers from both theoretical and experimental physicists all chasing the axion using low-, medium- and high-energy accelerator beams from different laboratories worldwide.

But when it proved to be too elusive, many in the physics community then abandoned the search in the 1990s, based on puzzling evidence that perhaps this tantalizing particle didn't exist after all. Some groups flatly denied its existence and began referring to it as a "phantom."

Jain's initial interest in the elusive particles originated with work he began publishing in 1974 in Physical Review Letters and other journals that demonstrated evidence for particles with very low mass and very short lifetimes during particle accelerator experiments he conducted at Fermilab and Brookhaven National Laboratory.

At the time, Jain's papers elicited little interest from other physicists.

"This particle was there in my original paper in 1974," he said. "The experiment gave a hint that these particles existed but did not generate sufficient statistics to prove it. I knew I had to wait until a heavy ion beam at very high energy was available at a new accelerator."

As recently as 1999, a project called the CERES experiment at CERN in Geneva again focused on attempting to detect the axion, but that project also was unsuccessful.

The problem, according to Jain, was with their detector, which was electronic, the standard used in high-energy physics experiments today.

"They didn't know how to handle the detector for short-lived particles," Jain said. "I knew that for this very short-lived particle -- 10-13 seconds -- the detector must be placed very near the interaction point where the collision between the projectile beam and the target takes place so that the produced particle doesn't run away too far; if it does, it will decay quickly and it will be completely missed. That is what happened in most of the unsuccessful experiments." Instead, Jain used a visual detector, made of three-dimensional photographic emulsions, which act as both target and detector and that therefore can detect very short-lived particles, such as the axion. However, use of such a detector is so specialized that to be successful, it requires intensive training and experience. In the 1950s, Jain was trained to use this type of detector by its developer, the Nobel laureate, British physicist Cecil F. Powell. Jain has used it throughout his career to successfully detect other exotic

phenomena, such as the charm particle, the anomalon, the quark-gluon plasma and the nuclear collective flow. In Jain's successful experiment, the axions were produced under extreme conditions of high temperature and high pressure, using a heavy ion lead beam with a total energy of 25 trillion electron volts at CERN in Geneva.

His experiments generated 1,220 electron pairs with identified vertices, the origin of each pair. They peaked at a distance of just 200-300 microns from the interaction point where the collisions take place in the emulsion.

"Only at that very short distance did I find the peak signal of this very-low-mass, short-lived particle with a neutral charge," he said.

After they are produced, axions rapidly decay into two electron pairs, the electron and the positron, he explained.

"We identified each vertex for each electron pair and we would not accept any electron pair unless we knew its vertex," he said. "There was a congestion of all kinds of low mass particles, including axions, near the detector. The background has to be filtered out from this congestion in order to obtain the signal of the axion."

Jain's co-author on the paper is Gurmukh Singh, then a post-doctoral researcher at UB and now a visiting assistant professor in the Department of Computer and Information Sciences at the State University of New York at Fredonia.

During Jain's long and illustrious career at UB, he published 175 scientific papers on a wide variety of physics topics, ranging from cosmic ray research performed on balloon flights to National Institutes of Health-funded studies on bone tissue to find more effective cancer therapies. "After half a century as a scientist at UB, I find that with the discovery of this axion, my mission is complete," he concluded.
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

University at Buffalo

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.