Addressing pain and disease on the fly

December 06, 2011

Studies of a protein that fruit flies use to sense heat and chemicals may someday provide solutions to human pain and the control of disease-spreading mosquitoes.

In the current issue of Nature, biologist Paul Garrity of the National Center for Behavioral Genomics at Brandeis University and his team, spearheaded by KyeongJin Kang and Vince Panzano in the Garrity lab, discover how fruit flies distinguish the warmth of a summer day from the pungency of wasabi by using TRPA1, a protein whose human relative is critical for pain and inflammation.

In earlier research Garrity's team showed that flies, like humans, sense chemical irritants with TRPA1, indicating an ancient origin for harmful chemical sensing. In 2008, the team demonstrated that this protein serves a second function in flies: sensing warmth.

Gentle warmth and nasty chemicals trigger distinct responses. How can both responses rely on the same sensor? The team has now discovered that there is an easy answer. Insects actually make two forms of TRPA1, one specialized for each task.

What is the significance of this new research?

Such TRPA1 specialization has implications for devising bug sprays and traps to combat the transmission of diseases like malaria, dengue and West Nile virus. "This work on TRPA1 can explain how blood-sucking insects like mosquitoes discriminate noxious chemicals, which repel them, from the warmth of a human, which attracts them," says Garrity. "By activating one kind of TRPA1 you might be able to deter mosquitoes from biting you, while activating the other kind of TRPA1 might lure mosquitoes to a trap."

These findings also have implications for understanding the way that human damage-sensing neurons work, explains Garrity. Since human TRPA1 is a drug target aimed at treating diseases such as asthma, migraines, and chronic pain, Garrity says it's important to understand how TRPA1 proteins operate.

"Fruit flies are easy to work with in the lab and this lets us test hypotheses about how TRPA1 operates quickly and relatively cheaply." Says Garrity. "Fortunately, the function of TRPA1 seems evolutionarily ancient and conserved from flies to mosquitoes to humans, so one can gain insights of general biomedical relevance using flies."

"Untreatable chronic pain and insect-borne diseases are two major human health problems," says Garrity. "When you think about basic research translating into treatments to help people, work in these areas has tremendous potential for easing human misery."

The study was co-authored by: Kyeongjin Kang, Vincent C. Panzano, Elaine C. Chang, Lina Ni, Alexandra M. Dainis and Paul A. Garrity from the National Center for Behavioral Genomics and Volen Center for Complex Systems, Department of Biology, Brandeis University; Adam M. Jenkins, Kimberly Regna, from Boston College; Marc A. T. Muskavitch from The Broad Institute and Harvard School of Public Health.

The study was funded by the National Science Foundation, National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke.
-end-


Brandeis University

Related Chronic Pain Articles from Brightsurf:

Researchers are developing potential treatment for chronic pain
Researchers from the University of Copenhagen have developed a new way to treat chronic pain which has been tested in mice.

Molecular link between chronic pain and depression revealed
Researchers at Hokkaido University have identified the brain mechanism linking chronic pain and depression in rats.

How chikungunya virus may cause chronic joint pain
A new method for permanently marking cells infected with chikungunya virus could reveal how the virus continues to cause joint pain for months to years after the initial infection, according to a study published Aug.

Gastroesophageal reflux associated with chronic pain in temporomandibular joint
Gastroesophageal reflux (GERD) is associated with chronic, painful temporomandibular disorder -- pain in the temporomandibular joint -- and anxiety and poor sleep contribute to this association, according to a study in CMAJ.

One step closer to chronic pain relief
While effective drugs against chronic pain are not just around the corner, researchers from Aarhus University, Denmark, have succeeded in identifying a protein as a future potential target for medicinal drugs.

Gut bacteria associated with chronic pain for first time
In a paper published today in the journal Pain, a Montreal-based research team has shown, for the first time, that there are alterations in the bacteria in the gastrointestinal tracts of people with fibromyalgia.

Nearly 5.4 million cancer survivors suffer chronic pain
A new report finds about one in three cancer survivors (34.6%) reported having chronic pain, representing nearly 5.4 million cancer survivors in the United States.

New opioid speeds up recovery without increasing pain sensitivity or risk of chronic pain
A new type of non-addictive opioid developed by researchers at Tulane University and the Southeast Louisiana Veterans Health Care System accelerates recovery time from pain compared to morphine without increasing pain sensitivity, according to a new study published in the Journal of Neuroinflammation.

New target for chronic pain relief confirmed by scientists
A research group at Hiroshima University observed a potential new target for chronic pain treatment.

Menopause symptoms nearly double the risk of chronic pain
In addition to the other health conditions affected by estrogen, it has also been shown to affect pain sensitivity.

Read More: Chronic Pain News and Chronic Pain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.