Keeping ship hulls free of marine organisms

December 06, 2012

If a ship is at anchor for longer periods algae, shells and barnacles will colonize it. Every year, this so-called biofouling causes economic losses of billions of Dollar. Biological growth on the underwater surface promotes corrosion. The deposits increase the roughness of the hull below the waterline which has a braking effect as the ship travels. Depending on the roughness of the basified bio layer, the consumption of fuel can increase by up to 40 percent. In the case of a large container ship this can result in additional annual costs of several millions.

All the countermeasures used to date have considerable drawbacks: Cleaning the hull by sandblasting in a dry dock removes also the painted coating and can only be used every three to five years. There are effective hull coatings preventing the growing of adhering bio layers, but in most cases by ecotoxic biocides. Both copper ions and synthetic biocides accumulate in the coastal water and in the sediments. For this reason the particularly toxic tributyltin (TBT) is banned since 2008 and the currently preferred and still permitted copper oxide containing coatings are to be replaced by non-toxic alternatives in the foreseeable future.

As part of the BMWi-supported project consortium "Controlled Antifouling System based on Nanocomposits for Shipping" (GANaS) researchers at the Fraunhofer Institute for Mechanics of Materials (IWM) in Halle have developed a more ecologically-friendly alternative. "The electrochemically active coating system produces regularly changing pH values on the surface of the hull. This effectively prevents colonization without having to use any biocides", explains Professor Manfred Füting of the IWM in Halle who is coordinating the project.

Painted coatings as electrodes

Large area electrodes were painted on an isolating primer coating. The electrochemical active layer based on a sol-gel paint of NTC (nano tech coating gmbH), which was modified by electrically conductive particles. To achieve an adequate distribution of the electrolysis current a highly conductive interlayer was applied. In a preprogrammed and optimized electrochemical process the electrolysis current is periodically commutated and interrupted. A current density of lower than 0,2 mAcm-2 generates enough pH stress near the surface of the hull to prevent the growing on of any barnacles, shells and algae The electric current is supplied by a photovoltaic module or by the land based power grid.

The electrochemical antifouling by alternating pH values was developed and patented by the project partner bioplan GmbH. This principle is working effectively and independently of marine flora and the kind of sea water. "With the coating development in the GANaS project we are on the way to a practical solution", says Füting.

With their development Füting and colleagues are primarily looking at official ships, such as oil spill ships or fireboats: These are in port most of the time, but must be ready for deployment as soon as they are required. "A ship with a heavy amount of growth will no longer be able to attain the speed it requires to quickly reach the location where it is needed", says Füting as food for thought.

Tests with the first prototypes at the Barth shipyard were promising: differently coated and electrochemically active and passive large areas are currently tested to prove their long-term stability against hydrodynamic stress and efficiency to prevent adherence and growth of bio layers. To achieve the real applicability of an economically competitive and ecofriendly antifouling system follow-up projects are planned: "They will mainly involve improving the technical applicability and optimization of our electrochemical antifouling system, which then could be applied on ship hulls for at least 3 to 5 years", states Füting.


Related Biocides Articles from Brightsurf:

More chemicals can be assessed for endocrine disrupting effects
A European guidance document aimed at identifying endocrine disrupting pesticides can--with some modifications--be used to assess other chemicals' endocrine disrupting effects.

HKU scientists find high concentrations of toxic phenyltin compounds in local Chinese white dolphins
An HKU research team confirmed the occurrence of biomagnification of toxic substance TPT compounds along the marine food chain resulted in very high concentrations of TPT in two top predators, the Chinese white dolphin and the finless porpoises.

Making polyurethane degradable gives its components a second life
Polyurethane waste is piling up, but scientists have a possible solution: They have developed a method to make polyurethane degradable.

C. difficile resists hospital disinfectant, persists on hospital gowns, stainless steel
Surgical gowns and stainless steel remained contaminated with the pathogen Clostridium difficile even after being treated with the recommended disinfectant.

Swapping water for CO2 could make fracking greener and more effective
Scientists at the Chinese Academy of Sciences and China University of Petroleum (Beijing) have demonstrated that CO2 may make a better hydraulic fracturing (fracking) fluid than water.

Effectively collecting tiny droplets for biomedical analysis and beyond
In a single sneeze or a cough, as many as 40,000 tiny droplets are forcibly propelled from our mouth and nose into the air.

Health risks through fumigated containers
Products transported by sea in containers are often fumigated with biocides as protection against pests.

Microgel powder fights infection and helps wounds heal
While making smart glue, a team of engineers discovered a handy byproduct: hydrogen peroxide.

High stability of the hepatitis B virus
At room temperature, hepatitis B viruses (HBV) remain contagious for several weeks and they are even able to withstand temperatures of four degrees centigrade over the span of nine months.

Discovery could influence methods to control bacteria on medical and other surfaces
New research has revealed how bacteria thin the liquid they are swimming through in order to free themselves when trapped by walls or other obstacles.

Read More: Biocides News and Biocides Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to