New understanding can lead to srategies for dealing with neurodegenerative diseases

December 06, 2012

Jerusalem Dec. 6, 2012 - A new understanding of what takes place on the cellular level during the development of neurodegenerative diseases, such as Parkinson's, Alzheimer's, ALS and Huntington's diseases, offers promise towards possible new strategies for combating such diseases, say Hebrew University of Jerusalem researchers.

Neurodegenerative conditions result from an impairment of motor function or cognitive function or both. This impairment results from degeneration in the particular area of the brain responsible for those functions.

Although these neurodegenerative diseases have been functionally linked to toxic protein aggregation (deposits), there is much that is unknown about the mechanism through which aggregation causes toxicity and death at the cellular level. Inclusion bodies - structures comprised of pathogenic protein aggregates -- have long been seen as a hallmark of disease, but the relationship between inclusions and disease has remained somewhat mysterious.

In a study published in PNAS (Proceedings of the National Academy of Sciences in the US). Hebrew University researchers (working in the lab of Dr. Daniel Kaganovich in the Cell and Developmental Biology Department, together with collaborators) present evidence that suggests that these inclusion bodies, which have traditionally been thought to accompany disease onset, actually have a cell-biological function that is not necessarily related to the disease conditions.

Further, the researchers suggest that some of those inclusion bodies not only are not toxic, but actually are part of a natural protective process. The researchers have identified two inclusion bodies, which they call JUNQ and IPOD. Aggregation in the JUNQ can lead to toxicity, whereas aggregation in the IPOD is protective.

These findings, say the Hebrew University researchers, point up a new potential strategy for designing therapeutics for neurodegenerative disease. Instead of preventing proteins from aggregating, which can be very difficult, it may be possible to enhance the cellular ability to actively enclose harmful aggregates within protective inclusions, thereby neutralizing the toxic proteins that bring on further neurodegenerative damage and even death.
-end-


The Hebrew University of Jerusalem

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.