Nobody's perfect

December 06, 2012

Researchers at Cambridge and Cardiff have found that, on average, a normal healthy person carries approximately 400 potentially damaging DNA variants and two variants known to be associated directly with disease traits. They showed that one in ten people studied is expected to develop a genetic disease as a consequence of carrying these variants.

It has been known for decades that all people carry some damaging genetic variants that appear to cause little or no ill effect. But this is the first time that researchers have been able to quantify how many such variants each of us has, and list them. This figure of 400 is likely to increase as more and more powerful genetic studies discover rare genetic variants more efficiently. Such research brings to the fore ethical questions surrounding anonymous studies and incidental findings.

"For over half a century, medical geneticists have wanted to establish the magnitude of the damage caused by harmful variants in our genomes," says Dr Yali Xue, lead author from the Wellcome Trust Sanger Institute. "Our study finally brings us closer to understanding the extent of these damaging mutations.

"We measured the number of potentially damaging variants in the genomes of apparently normal healthy humans by comparing two different datasets: whole genome sequences from 179 people in the 1000 Genomes Pilot Project, who were unlikely to have any overt genetic disease at the time of sampling, and information from the Human Gene Mutation Database (HGMD), a detailed catalogue of human disease-causing mutations that have been reported in the scientific literature."

In many cases, the disease or damaged variants were single, 'recessive' genetic variants that are unlikely to cause any harm to the carrier. A recessive genetic variant will only exert its effect when two copies - one in each chromosome - are present.

In one in ten people, however, the team could point to a potential clinical effect of the genetic variants. This is because these people either carry two copies of a specific recessive disease variant, or alternatively a dominant genetic variant. Dominant disease genetic variants can give rise to a disease trait when even a single copy is present.

"In the majority of people we found to have a potential disease-causing mutation, the genetic condition is actually quite mild, or would only become apparent in the later decades of life," says Professor David Cooper, lead author of the study from Cardiff University. "We now know that normal healthy people can possess many damaged or even completely inactivated proteins without any noticeable impact on their health. It is extremely difficult to predict the clinical consequences of a given genetic variant, but databases such as HGMD promise to come into their own as we enter the new era of personalized medicine."

Catalogues of disease-causing variants such as HGMD have been created over the past two decades but they are still far from complete. Disease variants are generally extremely rare and comprehensive searches for such mutations in many populations have scarcely begun.

The genome samples selected for this study were anonymized so the participants could not receive any information about whether or not they might be at risk for a particular genetic disorder. This is increasingly becoming an ethical issue for medical geneticists.

"Should incidental findings be fed back to people who have volunteered their sample to a study? There is no clear answer to this question," says Dr Chris Tyler-Smith, lead author from the Wellcome Trust Sanger Institute. "All of our genomes contain flaws; some of us will carry deleterious variants but will not be at risk of acquiring the associated disease for one reason or another. For others, there will be health consequences, and early warning could be useful, but might still come as an unwelcome surprise to the participant."

As DNA sequencing becomes more commonplace, geneticists must determine the most ethical way to handle this sensitive information.
-end-
Notes to Editors

Publication Details

Yali Xue, Yuan Chen, Qasim Ayub, et al (2012). 'Deleterious- and Disease-Allele Prevalence in Healthy Individuals: Insights from Current Predictions, Mutation Databases, and Population-Scale Resequencing' Published online in American Journal of Human Genetics on 06 December
Volume: 91; Issue: 6; Manuscript: 1298; DOI: 10.1016/; PII

Funding

This study was funded by the Wellcome Trust and BIOBASE GmbH.

Participating Centres

The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U

Selected Websites

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.
http://www.sanger.ac.uk.

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.
http://www.wellcome.ac.uk.Contact details

Don Powell, Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel 44-1223-496-928
Mobile 44-7753-775-397
Email press.office@sanger.ac.uk

Wellcome Trust Sanger Institute

Related Genetic Variants Articles from Brightsurf:

Researchers identify genetic variants linked to toxic side effects from bevacizumab
In the largest study of its kind, researchers have found two common genetic variants that can be used to predict whether or not cancer patients might suffer severe adverse side-effects, such as high blood pressure, from the drug bevacizumab.

Genetic risk of developing obesity is driven by variants that affect the brain
Some people are at higher risk of developing obesity because they possess genetic variants that affect how the brain processes sensory information and regulates feeding and behavior.

Genetic background influences disease risk from single-gene variants
Life can change dramatically when someone learns they are genetically predisposed to a disease.

Researchers identify novel genetic variants linked to type-2 diabetes
After examining the genes of more than 200,000 people all over the world who have type-2 diabetes, researchers from the Perelman School of Medicine at the University of Pennsylvania and the Veterans Health Administration's Corporal Michael J.

FSU researchers help discover new genetic variants that cause heart disease in infants
Florida State University researchers working in an international collaboration have identified new genetic variants that cause heart disease in infants, and their research has led to novel insights into the role of a protein that affects how the heart pumps blood.

Twenty four genetic variants linked to heightened womb cancer risk
Twenty four common variations in genes coding for cell growth and death, the processing of oestrogen, and gene control factors may be linked to a heightened risk of developing womb (endometrial) cancer, indicates the most comprehensive review of the published evidence so far in the Journal of Medical Genetics.

Genetic variants reduce risk of Alzheimer's disease
A DNA study of over 10,000 people by UCL scientists has identified a class of gene variants that appear to protect against Alzheimer's disease.

Rare genetic variants predispose to sudden cardiac death
By identifying rare DNA variants that substantially increase risk of sudden cardiac death, researchers have laid the foundation for efforts to identify individuals who could benefit from prevention strategies prior to experiencing symptoms.

Genetic variants for autism linked to higher rates of self-harm and childhood maltreatment
People with a higher genetic likelihood of autism are more likely to report higher childhood maltreatment, self-harm and suicidal thoughts according to a new study by researchers at the University of Cambridge.

Genetic variants with possible positive implications for lifestyle
A German and British research team lead by the Technical University of Munich (TUM) has examined the interplay between genetics, cardiovascular disease and educational attainment in a major population study.

Read More: Genetic Variants News and Genetic Variants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.