Researchers unravel mysteries of SCN8A mutation in epilepsy

December 06, 2015

PHILADELPHIA, December 6, 2015 - Three studies presented at the American Epilepsy Society's (AES) 69th Annual Meeting explore the effects of mutations in the SCN8A gene, thought to underlie early infantile epileptic encephalopathy (EIEE) and other neurological conditions.

The SCN8A gene mediates electrical signaling in the brain by controlling the flow of sodium currents. Findings from these studies could inform the development of precision medicine therapeutics and lead to more effective strategies for diagnosing and treating patients with epilepsy.

In the first study, (abstract 3.142) researchers from the University of Michigan describe how faulty electrical signaling in the brain may underlie seizure activity in patients with EIEE.

The authors focus on a specific aberration in SCN8A known as missense mutation p.Asn1768Asp (N1768D). Mice carrying this mutation develop hallmarks of EIEE, but it remains unclear how this mutation affects sodium currents. Analysis of sodium currents in neurons from these mice and their healthy counterparts revealed that the N1768D mutation alters sodium currents in ways that likely interfere with electrical signaling in the hippocampus.

"We predict that these changes in sodium current, especially the more than doubling of persistent current density, may contribute to seizures in EIEE patients carrying the N1768D mutation in SCN8A," says author Luis Lopez-Santiago, Ph.D., an assistant research scientist at the University of Michigan.

A second study (abstract 2.362) broadens the spectrum of illnesses linked to SCN8A mutations to encompass both mild and severe forms of epilepsy. Researchers from the Danish Epilepsy Centre, the University of Tübingen, the University of Leipzig and Schön Klinik Vogtareuth examined SCN8A gene sequences from 35 patients with epilepsy, comparing the patient's clinical, neurophysiologic and neuroradiological findings with their genetic backgrounds.

Based on their findings, the authors divided the patients into three distinct subtypes. The first group of patients had no family history of SCN8A mutation and developed early-onset, severe, drug-resistant epilepsy with deteriorating cognitive function and experienced sudden unexpected death in epilepsy (SUDEP). The second group also lacked family history but presented with mild-to-moderate intellectual disability, mild or no neurological signs, and drug-resistant epilepsy with extended seizure-free periods. A third group included unrelated families that had identical SCN8A missense mutations associated with a very mild form of epilepsy that was outgrown by puberty and was not associated with cognitive or neurological deficits.

"We provide new data that expand the spectrum of SCN8A-related epilepsies to include familial and sporadic cases. These range from severe early onset encephalopathy with epilepsy to milder forms of drug-resistant epilepsy to familial cases with a very mild form of epilepsy," says author Elena Gardella, Ph.D., a clinical associate professor at the Danish Epilepsy Center, Filadelfia, at the University of South Denmark.

In a third study, (abstract 2.087|A.03) researchers from University of Michigan unveil a new platform for identifying effective therapies. The authors studied cell samples from patients with epilepsy to understand how spontaneous, non-inherited SCN8A mutations affect electrophysiology in the brain. These so-called de novo mutations are linked to early infantile epileptic encephalopathy associated with severe epilepsy and cognitive impairment. Patients with these mutations are also at higher risk of SUDEP.

Researchers obtained fibroblast cells from two patients with SCN8A mutations, reprogramming the cells into induced pluripotent stem cells and allowing those stem cells to develop into neurons. Examination of the neurons' electrophysiological properties suggest that the SCN8A mutation leads to altered persistent sodium current and neuronal excitability compared with similarly derived neurons lacking the mutation.

"These strategies can be used in future studies as a novel platform for identifying effective drug therapies to ameliorate seizures," says Andrew Tidball, Ph.D., a postdoctoral research fellow at the University of Michigan.
About the American Epilepsy Society:

The American Epilepsy Society is a medical and scientific society whose members are engaged in research and clinical care for people with epilepsy. For more than 75 years, AES has provided a dynamic global forum where professionals from academia, private practice, not-for-profit, government and industry can learn, share and grow. Find out more at

Information Contacts:

Natalie Judd, Big Voice Communication, 203-389-5223,

Tess Aaronson, Big Voice Communication, 203-389-5223,

American Epilepsy Society

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to