Controlling gene activity in human development

December 06, 2016

Researchers at the Babraham Institute have revealed a new understanding of the molecular switches that control gene activity in human embryonic stem cells. This insight provides new avenues for improving the efficiency of being able to drive stem cells to create a desired cell type - an essential requirement to fulfil their promise in regenerative medicine.

In the developing embryo and during the specialisation of stem cells, the activity of genes must be tightly controlled (by a process called epigenetics) so that the correct genes are switched on and off at the right time and in the right cells. One of the main ways that this process is regulated is by a protein complex called Polycomb Repressive Complex 2 (PRC2), which keeps genes switched off until they are needed. We know from previous studies that PRC2 is necessary for controlling gene activity during the development of the fruit fly and the mouse, but we know very little about its role in human development or in the specialisation of stem cells.

As described in the journal Cell Reports, the researchers used the CRISPR gene editing technique to delete PRC2 from human embryonic stem cells. Loss of PRC2 caused the cells to switch on many genes that are not normally active in these cells. Interestingly, the set of genes that were switched on have important roles in the formation of specialised cell types in the developing embryo. This exciting finding reveals that one of the main functions of PRC2 is to keep these identity-specifying genes switched off during the very early stages of human development until they are required. The researchers also discovered that the quality and stability of the embryonic stem cells were compromised when the set of genes was aberrantly switched on. These changes led to the inability of embryonic stem cells lacking PRC2 to specialise correctly into mature cell types.

Dr Peter Rugg-Gunn, senior author on the research paper and research group leader at the Babraham Institute explained: "This work is exciting because it reveals that gene activity is controlled by similar molecular switches in human development as in other species such as the fly and mouse. We have also uncovered human-specific differences in the way that embryonic stem cells respond to genes being misregulated. These findings provide new insights into the development of our own species, and might enable new ways to turn embryonic stem cells into useful cell types, such as heart and pancreas, which can be used for cell-replacement therapies."
-end-
This research was funded through grants provided to Dr Peter Rugg-Gunn by the Wellcome Trust and the Medical Research Council (MRC). The Babraham Institute is strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Babraham Institute

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.