Nav: Home

How the tuberculosis vaccine may protect against other diseases

December 06, 2016

The tuberculosis vaccine is well known to help protect against other infectious diseases, as well as cancer, but the exact mechanisms have not been clear. A study published December 6 in Cell Reports now shows that the broad-spectrum effects of the Bacillus Calmette-Guerin (BCG) vaccine--the most widely used vaccine in the world--could be mediated by metabolic and epigenetic changes in white blood cells called monocytes through a process called trained immunity. This discovery could pave the way for strategies that combine immunological and metabolic stimulation to boost the effectiveness of vaccines and anti-cancer therapies.

"The implications of these findings are double: On the one hand, we have uncovered new biological interactions that link cellular metabolism with immune responses, and on the other hand, we have opened the door for new therapeutic approaches in which metabolism modulators modulate innate immune responses and can serve as potential novel immunotherapies," says senior study author Mihai Netea of Radboud University Medical Center. "However, what it is important to realize is that this is the beginning of the process to bring this to clinical practice, and more studies are needed for that."

Many epidemiological studies have demonstrated BCG's capacity to protect against infections other than tuberculosis. For example, early administration of the BCG vaccine reduces child mortality, mainly due to a reduction in lower respiratory infections and harmful immune responses triggered by infections. BCG is also used to treat bladder cancer and appears to be beneficial in several other conditions, including asthma and parasitic diseases. However, it has not been clear exactly how BCG exerts its wide-ranging effects.

To address this question, Netea and his team examined BCG-induced metabolic changes in innate immune cells called monocytes. They found that vaccination induced a strong, long-lasting increase in glycolysis and, to a lesser extent, glutamine metabolism in mice and humans. This shift in glucose metabolism toward glycolysis was necessary to trigger trained immunity. This process relies on epigenetic changes, which affect gene activity without altering the DNA sequence, to enhance the ability of innate immune cells to recognize and mount more effective responses against previously encountered pathogens.

Specifically, BCG-induced metabolic changes were required to induce modifications to proteins called histones, which act as scaffolds around which DNA wraps. In the human cohorts, single-nucleotide variations in genes encoding glycolysis enzymes affected the induction of trained immunity in monocytes. Taken together, the results show that cellular metabolism reprogramming is a central process involved in BCG-induced trained immunity.

"These findings change the concept that the innate immune system cannot adapt in the long-term after an infection or vaccination," Netea says. "The whole concept that the function of innate immune cells can change in a stable way, for example, being improved by certain vaccines such as BCG, is a paradigm shift in immunology, as until not too long ago it was assumed that only the adaptive immune system can adapt to previous infections or vaccinations."

Host immune responses are classically divided into innate immune responses, which react rapidly and nonspecifically upon encountering a pathogen, and adaptive immune responses, which are slower to develop but are specific and build up immunological memory, Netea explains. The discovery of trained immunity has challenged the dogma that only adaptive immunity can build immunological memory.

According to Netea, the next step is to conduct a bigger, broader analysis of circulating monocytes in BCG-vaccinated individuals at risk for infections. "In the future, bigger studies should assess inter-individual variation in these responses, in order to be able to identify which factors influence vaccination responses at the level of a person," Netea says. "In the end, a better understanding of BCG-induced trained immunity could lead to the development of strategies that alter cellular metabolism pathways to improve human host defense mechanisms and boost the effectiveness of vaccines and immunotherapy in patients."
-end-
The researchers were supported by the European Research Council; the Netherlands Organization for Scientific Research; the Northern Portugal Regional Operational Programme, under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund; and the Fundação para a Ciência e Tecnologia.

Cell Reports, Arts et al.: "Immunometabolic pathways in BCG-induced trained immunity" http://www.cell.com/cell-reports/fulltext/S2211-1247(16)31552-2

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Tuberculosis Articles:

Tuberculosis: New insights into the pathogen
Researchers at the University of Würzburg and the Spanish Cancer Research Centre have gained new insights into the pathogen that causes tuberculosis.
Unmasking the hidden burden of tuberculosis in Mozambique
The real burden of tuberculosis is probably higher than estimated, according to a study on samples from autopsies performed in a Mozambican hospital.
HIV/tuberculosis co-infection: Tunneling towards better diagnosis
1.2 million people in the world are co-infected by the bacteria which causes tuberculosis and AIDS.
Reducing the burden of tuberculosis treatment
A research team led by MIT has developed a device that can lodge in the stomach and deliver antibiotics to treat tuberculosis, which they hope will make it easier to cure more patients and reduce health care costs.
Tuberculosis: Commandeering a bacterial 'suicide' mechanism
The bacteria responsible for tuberculosis can be killed by a toxin they produce unless it is neutralized by an antidote protein.
A copper bullet for tuberculosis
Tuberculosis is a sneaky disease, and the number one cause of death from infectious disease worldwide.
How damaging immune cells develop during tuberculosis
Insights into how harmful white blood cells form during tuberculosis infection point to novel targets for pharmacological interventions, according to a study published in the open-access journal PLOS Pathogens by Valentina Guerrini and Maria Laura Gennaro of Rutgers New Jersey Medical School, and colleagues.
How many people die from tuberculosis every year?
The estimates for global tuberculosis deaths by the World Health Organisation (WHO) and the Institute for Health Metrics and Evaluation (IHME) differ considerably for a dozen countries, according to a study led by ISGlobal.
Beyond killing tuberculosis
Historically, our view of host defense against infection was that we must eliminate pathogens to eradicate disease.
Tuberculosis drugs work better with vitamin C
Studies in mice and in tissue cultures suggest that giving vitamin C with tuberculosis drugs could reduce the unusually long time it takes these drugs to eradicate this pathogen.
More Tuberculosis News and Tuberculosis Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab