Unlocking a liver receptor puzzle

December 06, 2016

Imagine a key that opens a pin tumbler lock. A very similar key can also fit into the lock, but upside down in comparison to the first key.

Biochemist Eric Ortlund and colleagues have obtained analogous results in their study of how potential diabetes drugs interact with their target, the protein LRH-1. Their research, published in Journal of Biological Chemistry, shows that making small changes to LRH-1-targeted compounds makes a big difference in how they fit into the protein's binding pocket.

This research was selected as "Paper of the Week" by JBC and is featured on the cover of the December 2 issue.

LRH-1 (liver receptor homolog-1) is a nuclear receptor, a type of protein that turns on genes in response to small molecules like hormones or vitamins. LRH-1 acts in the liver to regulate metabolism of fat and sugar.

Previous research has shown that activating LRH-1 decreases liver fat and improves insulin sensitivity in mice. Because of this, many research teams have been trying to design synthetic compounds that activate this protein, which could have potential to treat diabetes and nonalcoholic fatty liver disease. This has been a difficult task, because not much is known about how synthetic compounds interact with LRH-1 and switch it into the active state.

Ortlund lab researchers used X-ray crystallography to explore in detail how the LRH-1 protein interacts with two closely related LRH-1 activators, previously identified by collaborators at the University of Southampton, UK.

The first author of the paper is Suzanne Mays, a graduate student in Emory's Molecular and Systems Pharmacology program. Ortlund is associate professor of biochemistry at Emory University School of Medicine. Nathan Jui, PhD, from Emory's Department of Chemistry and scientists at Scripps Research Institute in Florida also contributed to the paper.

"We were surprised to find two synthetic activators that are structurally very similar to each other interacting with LRH-1 completely differently," Mays says. "They can rotate nearly 180 degrees relative to each other in the binding pocket. This may explain why small changes to this class of molecule had unpredictable effects in previous studies."

The authors discovered a new interaction made by one of the compounds that has potential to serve as an "anchor point" to keep the compound in place. This will help researchers make compounds that better fit in the "lock" without worrying about them rotating around unpredictably. In collaboration with Jui's lab, the Ortlund lab is continuing to fine-tune the design of LRH-1 activators,
-end-
The research was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (F31DK111171, R01DK095750) and an Emory Catalyst Grant.

Emory Health Sciences

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.