Nav: Home

Hulking hurricanes: Seeking greater accuracy in predicting storm strength

December 06, 2016

ARLINGTON, Va. -- To better predict tropical cyclone intensity, scientists sponsored by the Office of Naval Research (ONR) recently worked with the National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration to gather atmospheric data from storms that formed in the Atlantic Ocean in 2016.

Fully developed tropical cyclones -- variously called hurricanes, typhoons or cyclones, depending on their region--can grow as wide as several hundred miles and sustain winds faster than 150 miles per hour. For example, Typhoon Tip (1979) had 190-mph winds and Hurricane Patricia (2015) whipped up 215-mph winds (the record).

Such storms are notoriously difficult to predict, presenting a volatile meteorological cocktail that can change direction, speed and strength, quickly and unexpectedly. They pose a severe threat to U.S. Navy fleet operations--so accurate forecasting is critical for protecting ships at sea, evacuating vulnerable bases, and performing humanitarian assistance and disaster relief.

"Think about the ships, equipment, people and assets that must be moved to safety before a hurricane hits," said Dr. Ronald Ferek, a program manager in ONR's Ocean Battlespace Sensing Department. "This represents a huge investment of resources. If we can improve the lead time and accuracy of storm forecasts, it would give naval leadership more time and detailed information for preparations, evacuation or shelter-in-place decisions."

The recent research involved flying NASA's unmanned Global Hawk planes above hurricanes -- more than 60,000 feet in the air -- and deploying sensor-laden dropsondes. Dropsondes are parachute- and GPS-equipped devices that measure temperature, humidity, moisture, wind speed and direction, pressure and altitude -- crucial factors in determining the potential strength and destructiveness of a hurricane.

The Global Hawks flew nine missions this year -- dropping 647 dropsondes -- culminating in three flights above Hurricane Matthew, a Category 5 storm that battered the East Coast in October. ONR is sponsoring efforts by the Naval Research Laboratory (NRL) and several universities to analyze and interpret the collected data, and integrate it into computerized prediction models.

"Dropsondes are valuable because they take numerous readings as they descend through the storm to the ocean's surface," said Dr. James Doyle, who works in NRL's Marine Meteorology Division in Monterey, Calif. "This provides in-depth information about internal storm structure, and the environment surrounding the storm."

This year's work builds on the Coupled Ocean/Atmosphere Mesoscale Prediction System-Tropical Cyclone -- COAMPS-TC, for short. This groundbreaking computer-forecasting tool was developed under ONR sponsorship and put into operations at the Fleet Numerical Meteorological and Oceanographic Center in 2013. COAMPS-TC uses complex algorithms to predict hurricane intensity by processing real-time and historical meteorological data, fed by information from satellites and remote-sensing stations.

Although weather forecasters have become better at forecasting a hurricane's path and landfall, they struggle with predicting its strength. But Doyle said this is improving as unmanned planes like the Global Hawk enable data collection from the storm's upper layer, which can rise over 60,000 feet in height. This layer is where tropical cyclones expel the air that ascends rapidly through deep thunderstorms found in the eyewall--where the greatest wind speed and precipitation are found.

Both Ferek and Doyle believe the upper layer dramatically impacts hurricane intensity. They're especially interested in learning how jet streams interact with the upper layer--as well as its effects on the eyewall and secondary circulation (when hot, moist air flows upward from the storm's bottom, fueling greater intensity).

Doyle's team will use this year's data to create an advanced version of COAMPS-TC for the 2017 season -- and will further test this new version by simulating hurricanes that occurred worldwide from 2013-2016. The goal is to see how accurate previous predictions were and use the new information to improve future forecasting.
-end-


Office of Naval Research

Related Hurricane Articles:

2017 hurricane season follows year of extremes
2016 hurricane season started in January and ended 318 days later in late-November.
Study Offers New Insight on Hurricane Intensification
In a new study, researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science showed the first direct observations of hurricane winds warming the ocean surface beneath them due to the interactions with currents from an underlying warm-water whirlpool.
NASA provides a 3-D look at Hurricane Seymour
Hurricane Seymour became a major hurricane on Oct. 25 as the Global Precipitation Measurement mission or GPM core satellite analyzed the storm's very heavy rainfall and provided a 3-D image of the storm's structure.
NASA sees Hurricane Seymour becoming a major hurricane
Hurricane Seymour was strengthening into a major hurricane in the Eastern Pacific Ocean when the NASA-NOAA Suomi NPP satellite passed over it from space.
NASA animation shows Seymour becomes a hurricane
Tropical Depression 20 formed in the Eastern Pacific Ocean on Sunday and by Monday at 11 a.m. it exploded into a hurricane named Seymour.
Hermine becomes a hurricane in the Gulf of Mexico
Tropical Storm Hermine officially reached hurricane status on Thursday, Sept.
NASA spies major Hurricane Georgette
Hurricane Georgette is a major hurricane in the Eastern Pacific Ocean.
NASA peers into major Hurricane Blas
As NASA satellites gather data on the first major hurricane of the Eastern Pacific Ocean hurricane season, Blas continues to hold onto its Category 3 status on the Saffir Simpson Wind Scale.
NASA gets an eyeful of Hurricane Blas
Satellites eyeing powerful Hurricane Blas in the Eastern Pacific Ocean revealed a large eye as the powerful storm continued to move over open waters.
Early use of 'hurricane hunter' data improves hurricane intensity predictions
Data collected via airplane when a hurricane is developing can improve hurricane intensity predictions by up to 15 percent, according to Penn State researchers who have been working with the National Oceanic and Atmospheric Administration and the National Hurricane Center to put the new technique into practice.

Related Hurricane Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...