Protein that promotes 'cell-suicide' could revolutionize eye cancer treatment

December 06, 2016

New research from the University of Liverpool has identified the role of a specific protein in the human body that can help prevent the survival and spread of eye cancer, by initiating cancer 'cell-suicide'.

The new findings may help revolutionise the approach to metastatic uveal melanoma (UM) - a cancer that arises from the pigment cells (melanocytes) in the eye, and for which there is currently no effective treatment.

Metastasis is the spread of a cancer or other disease from one organ or part of the body to another without being directly connected with it. This occurs in about half of the patients with UM.

Although rare, UM is the most common primary eye cancer in adults. While the primary tumour can often be treated very effectively, up to 50% of patients develop metastases most often in the liver, for whom no effective therapy is available.

Programmed cell death

Apoptosis, or programmed cell death, is a rapid and irreversible process to efficiently eliminate dysfunctional cells. A hallmark of cancer is the ability of malignant cells to evade apoptosis.

Dr Luminita Paraoan, from the University's Department of Eye and Vision Science in the Institute of Ageing and Chronic Disease, has published new findings in the British Journal of Cancer that identify the requirement of a protein called p63 for the initiation of apoptosis in UM.

Chromosome 3 is one of the 23 pairs of chromosomes in humans. People normally have two copies of each chromosome. One part of chromosome 3 contains the gene for the protein p63. Unfortunately people with aggressive (resistant to apoptosis) UM do not have this part and therefore do not have the p63 protein.

Dr Paraoan's research found that if the p63 gene is used in combination with another gene, called p53, they can effectively target UM and start the process of apoptosis in the cancerous cells.

Tumour suppressor genes

The p53 gene is from a class of genes called tumour suppressors which are mutated in cases of cancer. Tumour suppressor genes are protective genes. Normally, they limit cell growth by monitoring how quickly cells divide into new cells, repairing damaged DNA, and controlling when a cell dies.

When a tumour suppressor gene is mutated, for example in cancer cases, cells grow uncontrollably and may eventually form a mass called a tumour. Therefore p53 itself is ineffective in starting the process of apoptosis of cancer calls in UM.

Of her research Dr Luminita said: "The study highlights for the first time the requirement of p63 in the initiation of apoptosis in UM".

"Our findings have broad-ranging implications for other cancers in which apoptosis is evaded or is problematic. They will hopefully prove advantageous in designing therapeutic approaches to cancerous tumours that are currently resistant to chemotherapy and radiotherapy."
-end-
The paper, entitled 'p63 is required beside p53 for PERP-mediated apoptosis in uveal melanoma', can be found here.

University of Liverpool

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.