UTMB researchers find how Ebola disables the immune system

December 06, 2016

GALVESTON, Texas - A new study at The University of Texas Medical Branch in Galveston sheds light on how Ebola so effectively disables the human immune system.

Virologist Alex Bukreyev, UTMB professor and senior author of the study, said the research team engineered versions of the Ebola virus in order to study how the components responsible for thwarting or disabling our immune defenses wreak their havoc. The findings are described in the new edition of PLOS Pathogens.

For the past 16 years, there has been an extensive investigation of how the Ebola virus operates when it invades a new host such as a human and how it interferes with interferons -- specialized signaling proteins that are made and released in response to an invasion by a virus or other pathogen. Interferons directly inhibit replication of viral particles in cells. A focus of this research has been how Ebola gets around the host's cell-mediated immune response, which is another defense mechanism involving some specialized immune cells that either kill virus-infected cells or secrete antibodies that directly neutralize the virus.

Previous studies have identified two protein regions within the Ebola virus' structure called interferon inhibiting domains, or IIDs, that prevent the host's interferons from doing their job thus disabling the host's immune system defenses. As a result, these IIDs promote replication of the virus within the host. However, researchers have assumed that IIDs only inhibit the effects of interferons -- until now.

The study used genetically altered strains of the Ebola virus that were designed with one or both of the IID's disabled to study what they do to the host. The altered viruses were placed on specific types of immune cells isolated from human blood, called dendritic cells, T lymphocytes, B lymphocytes and natural killer cells, as these types of cells are key players in marshaling defenses.

"We found that IIDs work not only in ways previously established, which includes interference in cascades of protective biochemical reactions that occur in cells in response to Ebola that limit infection", Bukreyev said. "The IID's also counter the activity of immune cells, including T lymphocytes and natural killer cells that kill virus-infected cells as well as B lymphocytes that secrete antibodies." "It's a double edged sword -- the IIDs not only block interferon signaling, they also prevent infected cells from activating the cell-mediated arm of the immune response," said Patrick Younan, research scientist and co-lead author of the paper. "You take away these functions of Ebola virus and the immune system should clear the infection."

Bukreyev said, "taken together, the findings suggest that Ebola IIDs have a global dampening effect on the host's ability to fight off the impending Ebola infection, and also indicate the potential benefits of blocking the immunosuppressive effects of IIDs as a potential therapy for Ebola infection."
-end-
Other authors include UTMB's Ndongala Michel Lubaki, Rodrigo Santos, Michelle Meyer and Mathieu Iampietro as well as Richard Koup from the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, who served as a consultant.

University of Texas Medical Branch at Galveston

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.